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1. INTRODUCTION

The results obtained under the support of this grant are divided into four categories
corresponding to sections 2-5. The main thrust of the proposed and funded research has been
the modeling and control of intelligent flexible structures. Two previous reports (Appendix
I and II) delineate the efforts and results of the funded research during the first two years
of support. The present document focuses on the results of the last year of support. In
addition to results obtained while focusing on the objectives at hand (see section 7), general
results were obtained which are not directly related to the proposed objectives. These results
are related to the discovery of a nonlinear modal control method presented in section 3, a
deterministic methodology for treating the control of uncertainty in structures presented in
section 4, and the control of critical speeds in rotating machines as discussed in section 5.

Section 6 reviews some preliminary results in the control of thermoelastic systems.

In addition to the summary presentation of results, this report concludes with a discus-
sion of the original objectives, in section 9 and whether or not these have been met (they
have), and a list of publications under AFOSR support in section 9. Section 10 lists the grad-
uate students supported under the 3 years of this grant and section 10 discusses coupling
activities and technology transfer effectuated while under AFOSR support. The appendix

contains the first two annual technical reports for this award to provide completeness.

2. SUMMARY OF SMART STRUCTURE RESULTS

A substantial amount of research effort has been put forth in the area of smart structures
and intelligent material systems over the last decade, often without regard for application.
The work reported here examined a common example of a smart structure, i.e., the infamous
cantilevered beam in bending with either a surface mounted or embedded piezoceramic ac-
tuators and sensors, and the application of this configuration to control unwanted vibration
in a variety of configurations common to satellites. In particular, results for three applica-
tions point out natural, and perhaps unique, solutions to the vibration suppression problem,
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provided by a smart structures approach. The first of these three examples consists of the
slewing motion of a flexible beam through its bending direction around a rigid hub driven
by a motor. Such motions are common in space and robotics applications. The addition
of a piezoceramic based closed loop system is shown to significantly impact the power and

performance of the slewing configuration.

The second application examines the vibration suppression of slewing frames similar to
those used as solar panels on satellites. Such frames are rich in coupled bending and tor-
sion and known to vibrate excessively while slewing. The torsional motion is not able to be
suppressed by use of the rigid body actuator (motor) as is conventional. Here piezoceramics
mounted directly on the frame are shown to render the torsional motion controllable pro-
viding an order of magnitude improvement in system performance. Thus, a smart structure
approach is shown to provide a solution to a difficult vibration suppression problem not solv-
able by conventional sensors and actuators. Both theoretical prediction and experimental
verification is provided. Power consumption is shown to be minimal, and in fact, less in

some cases.

The third applicaticn examines the vibration suppression of a ribbed antenna similar to
those used on satellites (e.g. TDRSS). Such structures exhibit repeated and nearly repeated
natural frequencies. Hence, controllability becomes an issue and again a smart structures
approach provides a low cost natural solution to a practical vibration problem. Again both

experimental and theoretical results were obtained.

The results obtained under the support of this grant are summarized in several journal
papers and proceeding articles by the author’s graduate students (Leo and Inman, 1994, Leo
and Inman, 1993a, b, 1992a, b, Garcia and Inman, 1990, Dosch et al., 1993a, b, 1992, Inman
and Garcia, 1992, Garcia et al. 1991). These results indicate a clear, logical use of smart
structures to solve vibration suppression problems in situations where conventional sensors
and actuators are not applicable. From a control theory point of view, the use of smart
structures is beneficial because it allows the control designer to approach full state feedback
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in the design of a given system without resorting to state estimation. In addition, the use of
smart structures allows placement of sensors and actuators at almost any location allowing a
maximum use of the concept of controllability and observability. From a mechanical design
point of view, use of smart structures offers an order of magnitude reduction in settling times

for a small expenditure of power.
The specific results delineated in the Appendix B as well as in the refereed papers are:

e a smart structure approach allows sensors and actuators to be placed throughout a

structure or machine, allowing one to approach full state feedback.

o because sensors and actuators can be placed almost anywhere within a structure or
machine, they can be placed at points of maximum controllability and observability,

rendering very low power consumption in active control.

¢ in cases where rigid body motion is controlled along with flexible motion, the use of
smart structures can actually reduce total power consumption for equivalent perfor-
mance. Alternatively, the smart structure approach can be use to provide increased

performance.

e in cases where repeated modal frequencies require multiple actuator/sensors for con-

trollability, smart structures provide a natural solution.

o complex modeling issues can be avoided by using positive position feedback (PPF)

control as robustness depends only upon measurements of the open loop eigenvalues.

o the better the model, the more sophisticated the control law can be and the better

the performance.

Power Consumption While not yet published, it is clear from the results of experiments that

using smart structures involves a very small increase in total power consumption. In some

cases, the total power actually decreases (Garcia and Inman 1990). The power consumption
3




in slewing solar panel experiments indicate that an increase in power of 0.3 watts (i.e.,
from 121.53 to 121.83 watts) results in a substantial increase in performance. In particular,
if the damping ratios of the closed loop motor control are compared to the closed loop
motor control with smart structures attached (Leo and Inman) a dramatic improvement in
performance is observed. In particular, the use of rotational rigid body actuators exhibit low
controllability in torsion whereas the addition of piezoceramic actuators provide a drastic
increase in performance under combined rigid/smart structure control. The damping ratio

for the smart structural control system

e increases by a factor of 15 in the 1st torsional mode
o increases by a factor of 23 in the 2nd torsional mode

e increases by a factor of 6 in the 1st plate mode

and 1.5 times in the second bending mode. This represents a large improvement in perfor-

mance for a very small increase in power during a 30° slew maneuver.

Additional Results The main results in this section are reported in appendix B. In addition,
several journal papers have been accepted and are included in appendix C along with copies

of the appropriate conference papers.

3. RESULTS IN NONLINEAR MODAL CONTROL

Although not part of the original objective, the personnel funded by this support and
also funded by ARO (DJI) determined a new method of providing closed loop control for

weakly nonlinear systems which does not require any linearization.

This work extended the work of Shaw and Pierre (1992) on nonlinear normal modes to
include the case of forced response. This allows the nonlinear normal mode method to be
applied to the feedback control problem providing a new method of controlling nonlinear
systems. The proposed method uses the transformation proposed by Shaw and Pierre for
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homogeneous systems written in state space form. The coordinate transformation for the
forcing vector is defined in the state space and related to the physical coordinate system. The
results is a pseudo modal decoupling transformation of a nonlinear inhomogeneous system.
Although interesting in its own statement, this transformation also provides a nonlinear
modal control scheme. This result is applied to a known coupled two degree of freedom
oscillator with a cubic stiffness term. The results illustrate the design of a nonlinear modal
control law.

The concept that nonlinear modes with nonlinear modal equations exist for some set
of nonlinear systems has been accepted intuitively by many for quite some time. It wasn’t
until 1964 when Rosenberg presented the first paper on nonsimilar normal modes that it
became possible to solve even the simplest nonsimilar normal mode system. Many per-
turbation methods have been developed to approximate the deviation of a nonlinear mode
from a corresponding linear mode. However, only the Shaw and Pierre method utilizes the
definition of nonsimilar nonlinear modes as invariant manifolds. This method allows the
straight forward computation of nonsimilar nonlinear normal modes and their corresponding
mode shapes. Although algebraically tedious, this method lends itself to programming using

algebraic manipulation packages such as Mathematica© and MACSYMA®.
Closed Loop Response
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Figure 1. The displacement time response of one mass of a 2 degree of freedom oscillator with
cubic nonlinear using nonlinear feedback modal control. The open loop system is undamped.




4. RESULTS ON THE CONTROL OF UNCERTAIN SYSTEMS

Convex optimization techniques have been developed to design feedback control laws
for structures with uncertain transient inputs. The uncertain disturbances are modeled
deterministically as convex sets of functions. Three types of models have been considered; one
which bounds the total energy of the disturbance, another which bounds the instantaneous
energy, and a third that limits the maximum and minimum values of the input. Each
of these models provide an alternative to the usual statistical description (i.e. expected
value). Expressions for the maximum response are derived for each model. The optimal
feedback control law is found via the solution of an infinite dimensional optimization by
an affine parameterization of all stabilizing controllers. The parameterization maintains
convexity and converges to the unique solution as the number of terms in the approximation
is increased. The techniques have been illustrated on a simple model of an unconstrained

flexible structure.

As an application of the usefulness of this method, it has been used to design collocated
control laws for the small-scale model of a flexible antenna used in section 2. The objective
of the active control is to minimize the response of a single rib to a disturbance occurring at a
remote location on the structure. Two separate designs are examined. The first is standard
Linear Quadratic Gaussian (LQG) control, whereby the Hz norm of the transfer matrix is
minimized via the solution of two Riccati equations. Unfortunately, this type of design does
not exploit the favorable attributes of sensor/actuator collocation, resulting in control laws
that are not robust to model uncertainty and structural variations. An optimization approach
to H; optimal design is presented that bounds the phase of the control law, thereby increasing
its robustness. The optimization is shown to be convex, providing important guarantees on
solution accuracy and convergence. Control laws designed with both procedures have been
experimentally implemented on the antenna testbed. The results illustrate the advantages

of designing H; optimal controllers that are bounded in phase.

Experimental implementation of H2 optimal controllers designed via constrained convex
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optimization illustrated the robustness achieved by bounding the phase of the compensator.
In comparison with standard Linear Quadratic Gaussian (LQG) designs, they remained
stable in the presence of structural variations and model uncertainty. The loss of performance
that resulted from constraining the optimization could be compared to a trade-off curve
that represented all achievable LQG solutions. In this way, convex optimization proved to
be effective method of studying the trade-offs associated with constraining the phase of the

controller.

Although the results of the initial effort are encouraging, many questions arose regarding
the convex optimization approach to control design. For example, the optimal solutions were
found to be sensitive to the choice of functions used in the Q parameterization. Furthermore,
the optimization seemed to exhibit convergence properties when the constraint on the control
effort became large. Checking the phase constraint at discrete points (even for a fine grid)
introduced errors into the control design. Finally, the pole-zero cancellation procedure used
in this paper was a rather ad hoc method of order reduction, the reasons why more advanced
methods were ineffective needs to be investigated. Future work involves studying these topics
and also generalizing the phase constraints to control systems with more than one sensor
and actuator. The details of these results are reported in Leo and Inman (1994, a,b), which

appear in Appendix C.

5. CONTROL OF CRITICAL SPEEDS

A method has been researched for suppressing the resonances that occur as a rotating
machine is spun-up from rest to its operating speed. This proposed method invokes “stiffness
scheduling” so that the resonant frequency of the system is shifted during spin-up so as to
be distant from the excitation frequency. A strategy for modulating the stiffness through
the use of shape memory alloy has been derived.

Most common applications of “smart materials” actuators involves obliging them to
undergo some generalized displacement in response to a specified stimulus. A slightly dif-
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ferent approach is used in an application in which a modulus rather than a displacement is
manipulated.

The results; using a very simple model a rotatory machine, clearly indicate that stiffness
scheduling can reduce critical speed amplitude during run up. In particular, it is shown in
Parker, Segalman and Inman (1993) that the critical speed amplitude is reduced by 1/3 of
its open loop value by the use of shape memory alloys and the stiffness scheduling control
law. This work was supported by DOE (Parker, Segalman) and Inman’s time was paid in
part by ARO, in part by AFOSR under this grant.

6. CONTROL OF THERMOELASTIC SYSTEMS

Thermally induced vibrations remain largely uncontrolled while their presence can signif-
icantly affect the stability of structures. Thermal effects are important in space applications
and in other structures required to operate in environments where large temperature gra-
dients are common. In the satellite industry, thermally induced vibrations are a recurring
problem which affect the stability and the proper operation of satellites. The vibrations are
typically caused by the rapid heating of satellite appendages during normal orbital flight.
At the day-night and night-day orbital transitions, sudden heating produces temperature
gradients which result in time dependent thermal moments. These thermally induced mo-
ments can cause significant undesirable vibrations in the satellite. Numerous satellites have
been lost as a result of this problem and, therefore, it is important to find a method to
satisfactorily suppress these vibrations and to minimize their effect on the operation of the
spacecraft. The purpose of this work was to investigate thermally induced transverse vibra-
tions in flexible satellite appendages with the expectation that the results will be useful to
the satellite industry.

Consider, for example, a typical solar array found on most satellites. The solar array
is made up of two booms, a rigid bar and a solar blanket. The two booms are usually
cantilevered to a rotating shaft at one end and to the rigid bar at the other end. The
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solar blanket is a membrane stretched between the rigid bar and the rotating shaft. The
thermal disturbances generated in this structure result from the temperature gradients in
the two booms. The magnitudes of the thermal disturbances from the solar blanket and
the rigid bar are insignificant when compared to those generated in the booms. For this
reason, the dynamics of the boom were investigated. Each boom can be approximated
as a simply supported beam in transverse vibration. Assuming that the Euler-Bernoulli
beam assumptions hold, linear equations of motion were oi:tained which include a time
dependent thermal moment term. The thermal effects appear as a disturbance (a time
varying thermal moment) in the equations of motion and they also appear in the boundary
conditions. Knowirg the temperature distribution in the beam and the material parameters,
the thermal moment can be calculated. In solving for the temperature distribution, a classical
heat transfer approach was taken, where the motion of the structure does not to affect the
temperature distribution. That is, an uncoupled thermal structural analysis was performed
where the beam was assumed rigid for the purpose of calculating the teroperature distribution
and neither the incidence of the heat flux nor the actual structural deformations affected the

solution.

It was determined that a distributed control force would be most suitable to suppress the
thermally induced vibrations. Therefore, a piezoelectric sensor/actuator pair was added to
the model and two different control methods were applied. In the first case, an LQR controller
was used to suppress the vibrations. The results for the controlled case showed a significant
improvement in time response over the uncontrolled case. In the uncontrolled case, the
magnitude of the vibrations remained largely unchanged for times longer than one minute,
since very little damping was included in the model. Adding LQR control to the system,
the vibrations were suppressed in less than one second. This was possible, since the beam
examined was very small (i.e., low inertia). In the second case, positive position feedback
was used to control the vibrations. The results were similar to the LQR case. A significant
amount of damping was added to the model through active control. The results of the study

9




indicate that it is possible to model and control thermally induced vibrations in a simply
supported beam. The results suggest that the problems of thermally induced vibrations

encountered in the satellite industry can be solved using currently available technology.
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Modeling and Control of Intelligent Flexible Structures
- Slewing Frames

1. Introduction

In recent years, there has been a large amount of research on slewing structures against a
fixed base. These structures present challenging control problems since the action of
slewing induces residual vibrations. These vibrations can degrade performance when strict
pointing and tracking requirements are to be maintained.

Until now, most of the work has concentrated on the slewing of flexible beams. For the
most part, these structures exhibit only bending motion when excited [1-3]. Recently,
research performed by Sakawa and Luo [4] studied the control of a flexible beam with an
eccentric tip mass. This tip mass induced torsional vibrations when slewed, adding a new
dimension to the control problem. They presented motor control schemes designed to
simultaneously slew the structure and suppress vibrations.

The effort described here also examines the problem of slewing a structure that exhibits
bending and torsional vibrations. The structure studied is not a flexible beam, though, but
a frame that models the dynamics of a solar array. The torsional motion induced when
slewed is relatively uncontrollable using colocated motor control. Smart structure
technology will be applied in an attempt to suppress this motion. Namely, a piezoceramic
strut placed in the frame will render these modes controllable. A number of different
control laws will be experimentally verified.

2. Slewing Frame Testbed

A slewing frame was constructed to provide an experimental testbed for control. The frame
consisted of thin-walled circular aluminum tubing (Figure 1). Slewing actuation was
provided by an Electro-Craft 670 dc motor. Angular rate and position sensors could be
used for analog motor control.
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Figure 1. Slewing Frame Testbed.

An active strut was designed and inserted into the slewing frame. It consisted of a flat
aluminum bar layered with four piezoceramics on each side. Each ceramic was a Model G-
1195 from Piezo Electric Products with dimensions 2.5" x 0.75" x 0.01". The strut was
configured so that it could be used as a sensor, an actuator, or as a colocated
sensor/actuator pair. Figure 2 is a drawing of the active strut. The output from the active
strut is proportional to the strain induced in the member. Conversely, the active strut
produced a bending moment proportional to the command input.

A number of computers were available for control and data acquisition. A Comdyna GP-
6 analog computer was used for position control of the frame and various signal operations
(summation, subtraction, etc.). Control laws for the active strut were implemented on an
Optima 3 digital controller sampling at 1500 Hz. Finally, data acquisition and frequency
analysis was performed using a Tektronix 2630 Fourier Analyzer.

The objective of the experiments was to slew the frame in a reasonable amount of time
while minimizing unwanted vibratdons. Due to the configuration of the structure, bending
and torsional vibrations were induced when a maneuver was performed. The rest of this
paper will deal with the modeling and control aspects of this problem.
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Figure 2 Piezoceramic Active Strut.

3. Modeling and Analytical Resuits
A linear model of the slewing frame was developed so that a number of control laws could
be tested analytically. In physical coordinates, this model takes the form [3]

[M] Ipl)q (K] 0l])gq
[IbT 13] .. "'l: 0 0] = {f}) (D
0 7]

where M and K are the mass and stiffness matrices of the structure, respectively, Is is the
rigid body inertia about the slewing axis, and Ip is part of the interaction between the rigid
body and flexible motion. The physical coordinates of the structure are denoted q, and the
rigid body rotation is symbolized by 0. fis a matrix of applied forces and the overdot
represents differentiation with respect to time.

To correctly model the interaction between the motor and the structure, pinned-free natural
frequencies and mode shapes were used. The mass and stiffness matrices were built using
finite elements and a modal test was performed to verify analytical results [5]. By
collecting the normalized mode shapes into a matrix Sm, equation (1) was transformed into
modal coordinates by assuming q = Sm r and premultiplying by SmI. This yields
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A is a matrix of the form diag(©12..0i2.@N2), and Ip = ST Ip. Iis an N x N identity
matrix, where N is the number of flexible modes in the model.

The active strut was modeled as a moment generator [6]. For simplicity, it was assumed to
span the entire length of the strut. Although not a rigorous model of the piezoelectric
effect, it did produce satisfactory results.

To study the slewing frame, a 16 mode model was developed using finite elements. The
boundary condition was chosen to be pinned-free, and the natural frequencies and mode
shapes were verified by a modal test. Initially, a simple Proportional-Derivative (PD)
controller of the form

Gpd(S): -Ky é- Kp 6

was used for position control of the frame. The gains were set to values that produced an
adequate step response. Due to the nature of the boundary condition, this controller also
added damping to certain flexible modes. This occurs because the pinned-free condition
allows a large amount of interaction between the structure and the motor. In the model, the
damping in the motor is added to the flexible motion through the applied loads vector f.
Consequently, derivative action on the motor also produces an increase in damping in the
flexible motion. Results of an analytical study where Kp = 2.5 and Ky = 6.5 are given in
Table 1. All modes were initially assumed to be undamped.

This study reveals that a simple PD motor control adds a significant amount of damping to
the bending modes. This is consistent with previous results {7]. Table 1 also shows that
the torsional motion is still relatively undamped.

Table 1. Natural Frequencies and Damping Ratios in the
flexible modes using PD control.

4
Mode wd(Hz) % Critical
Torsional 437 0.41
Bending 8.87 11.24
Torsional 15.47 0.50
Plate 19.79 0.3
Bending 27.53 5.10




In an attempt to control the first torsional mode of the slewing frame, an analysis was
performed using the active strut as a sensor and an actuator. Various control laws were
attempted. The two that performed the best were Generalized Structural Filtering (GSF)
and Positive Position Feedback (PPF). Analytical designs were obtained using the model.
They indicated that the damping in the first torsional mode could be increased to 5.7 %
using the GSF method and to 8.5 % using PPF control. Details of the actual designs will
be presented in the following section.

4. Experimental Results

Analytical results indicated that the torsional motion of the frame was difficult to suppress
using colocated motor control. Further studies revealed that by using an active strut, these
torsional vibrations could be rendered controllable. Experimental results support these
conclusions and provide studies in the design of active control systems for flexible
structures.

Three levels of control were implemented on the slewing frame. The first consisted of a
simple PD compensator for the motor. This was necessary in order to position the frame
and suppress the bending vibrations. Next, a non-colocated control law was designed to
adequately damp the dominant torsional motion. Finally, a colocated controller using the
active strut was implemented and the results were compared to the non-colocated case.
Figure 3 is a schematic of the overall control architecture.

p :onal-Derivative Motor Control

The first control law studied was a simple PD compensator of the form given in equation

(3). The 6 term was the tachometer output, and 0 was the signal from the potentiometer.
The reference command was a step input of 1 volt. This corresponded to a 30" slewing
maneuver. The active strut was only used as a sensor for these experiments.

A typical response of the frame position is shown in Figure 4. The settling time for the
slew maneuver is about 6 seconds. In addition to controlling the position of the frame, the
PD compensator has the desirable effect of suppressing the bending motion.
Unfortunately, the torsional motion is still relatively undamped, even with quite alot of
derivative action on the motor. Table 2 lists the natural frequencies and damping ratios for
the case of experimental PD control. It shows that the colocated motor control suppresses




the dominant bending motion but leaves the torsional mode lightly damped. This trend is
similar to the results obtained analytically with the FEM model.

A

Digisal Active
igil Strut
Cesf C ppf Controller Output

Filter 20 Hz

—>{ |
Reference > * o - Frame

tach

Analog Computer

Figure 3. Slewing Frame Control Architecture.

Table 2. Natural frequencies and damping ratios for experimental

PD control.
4
Mode mg(Hz) % Critical
Torsional 432 0.82
Bending 7.68 9.18
Torsional 14.11 1.26
Plate 20.76 0.94
Bending 26.25 1.32
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Figure 4. Frame Step Response (Kp = 2.5, Ky =6.5).

Table 2. Natural frequencies and damping ratios for experimental

PD control
4
Mode wg(Hz) % Critical
Torsional 4.32 0.82
Bending 7.68 9.18
Torsional 14.11 1.26
Plate 20.76 0.94
Bending 26.25 1.32

During this maneuver, the sensor output of the active strut during a 30° slew is shown in
Figure 5. This illustrates the lightly daraped t« sional mode. The 4.32 Hz vibration does
not settle for over 30 seconds, well after the slewing maneuver is over.

One problem that became important during the experiments was static friction in the motor
and bearings. This problem is evident in Figure 4. The sudden stop of the slewing
maneuver is due to the fact that the motor cannot overcome the dry friction in the system.
This problem was even more important when control laws were implemented to suppress
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the torsional motion of the frame. This will be discussed in the next section on non-
colocated control.

Non-Colocared Control using the Active §

To supplement the PD compensator, a non-colocated controller was designed to add
damping to the torsional mode. The design tool was a method called Generalized Structural
Filtering (GSF). The GSF method uses non-minimum phase second order filters to
successively stabilize structural poles. The design is done iteratively, using ‘classical’
techniques of root locus and Bode plots. For a detailed description of GSF control, see
(81.

For this particular application, the design steps were as follows. Initially, a transfer
function was taken between the motor input and the active strut output. A commercially

available Recursive Least Squares package used the time domain data to obtain a pole-zero

6 =

Strut Output (Volts)
tfo ()

time (sec)

Figure 5. Active strut output for 30° slew maneuver with only PD control.

model [9]. From this model, root locus and Bode plots could be used to design a
compensator. The objective of the design was to add damping to the torsional motion
without destabilizing higher frequency dynamics. In an attempt to attenuate the high




frequency content of the control signal, it was filtered at 20 Hz with an Ithaca 24 dB/octave
low-pass filter. A number of designs were attempted, with varying degrees of success.
Each design was tested experimentally by feeding back the active strut output into the dc
motor and performing a slewing maneuver. All but the final compensator caused
instabilities in the flexible motion when experimentally implemented. The final GSF
controller took the form

(s/120+1) (s -29.5 + j34.2)
(s/140+1) (s + 26.0 + j 30.4)

Ggsfis) = .07 @

Equation (4) is the combination of a simple lead and a non-minimum phase filter. Figure 6
shows the response of the structure during a 30° slewing maneuver with GSF control on.
The torsional motion is adequately damped out , i.e, by the time the slewing is over (= 7 s),
the vibrations have ceased.

Even though this method damps out the torsional motion during a slew maneuver, the
deadband in the motor makes it ineffective for disturbance rejection. If some type of input
was applied to the frame (e.g. thermal shock of a solar panel) when it was not slewing, the
controller could not react until it overcame the static friction in the system. Thus, the static
friction limits the effectiveness of this non-colocated control.

To alleviate this problem, one of two things could be done. Quite simply, the first solution
is to reduce the static friction by using better hardware. The less of a deadband, the more
effective this type of controller will be. But since all real systems have static friction, a
more practical approach would be to put both the sensor and actuator on the flexitle
structure [10]). If this is done, then the vibration suppression of the torsional motion would
be independent of the slewing actuator. This colocated controller could suppress vibrations
during a slew maneuver as well as reject disturbances. The last experiment deals with this

type of design.
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Figure 6. Structural response using GSF control during a 30° slew.

The final control strategy was to use the active strut as a colocated sensor/actuator. The
design method was Positive Position Feedback (PPF). It is a type of second order filtering
which has good robustness and stability properties [11].

The objective is the same as before, suppress the torsional motion without destabilizing
higher modes. For the colocated case, stability boundaries are much better defined since
the phase of the transfer function lies between 0 and -180° over most of the frequency
range. Use of PPF control allowed for a much easier design process. Only two iterations
were necessary to obtain a satisfactory result, as opposed to the five or needed for GSF
control.

Cppf$) =07~ {fafs + of ©)
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Implementation of this control law increased the damping in the torsional mode from about
0.82% to 3.8% critical, almost a factor of S better. The slewing response (Figure 7) is not
as impressive as the one for the non-colocated control (Figure 6), but it is independent of
the motor. With this type of control, disturbance rejection is achieved since the active strut
serves as the actuator as well as the sensor.
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Figure 7. Structural response using PPF control on the active strut. Slew
maneuver is 30°,

This last control experiment illustrates an important point about slewing an active structure.
The advantages are that a number of separate colocated sensor/actuator pairs can be used
for both vibration suppression and disturbance rejection. This alleviates the problem that
the static friction played when using non-colocated control and allows more flexibility in
designing control laws. This was especially apparent in this case, since the dominant
torsional motion was not well controlled by motor control alone.

6. Objectives

The global objective of the proposed work is to model and experimentally verify the
slewing of a smart/intelligent beam and a slewing active frame system complete with
actuator dynamics, passive damping mechanisms and smart (piczoactive) system

components.
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The approach to be taken in modeling is to combine distributed parameter equations for the
actuating and sensing piezoelectric devices with those of the flexible structure by using
Euler Lagrange Equations. This approach also allows for the natural inclusion of the
slewing actuator’'s dynamics. To date, only simple proportional control has been illustrated
in the literature and at various laboratories. The approach here uses segmented actuators
and sensors to produce a multi-input multi-output system so that modern control methods
such as optimal control (minimum time/tracking) can be implemented and tested. They will
be used to determine the design producing the most favorable closed loop response. The
prediction will be experimentally verified.

The approach taken for the slewing frame is finite element based. Both passive constrained
layer damping treatments and piezoactive treatments will be used to replace a frame
clement. A piezoactive frame element will be constructed and modeled to produce an active
frame longeron. The active frame element is a unique concept which produces bending
control in the frame which will be combined with the slewing motor control to produce
desired vibrations suppression for improved performance.

7. Status

The significant accomplishment during this reporting period is the theoretical prediction and
experimental verification that torsional modes in slewing two dimensional flexible
structures require the use of a secondary piezoceramic actuators (smart structure) in order to
reduce jitter and increase the closed loop performance.

The slewing of a structure that exhibited bending and torsional motion was examined. An
analytical model predicted difficulty i1 suppressing the torsional vibration using a colocated
controller located at the slewing actuator. This was experimentally verified on a testbed that
consisted of a flexible frame slewed by a dc motor. An active strut was built by layering
piezoceramic material on a flat aluminum bar. This strut was placed in the frame and a
number of control experiments were performed. A non-colocated controller was designed
using Generalized Structural Filtering techniques. This adequately suppressed the torsional
vibrations but did not provide any disturbance rejection due to static friction in the system.
Positive Position Feedback was then implemented using the active strut as a colocated
sensor/actuator. Since this control scheme was independent of the motor, it was not limited
by the static fricion. Having two separate colocated controllers, one on the motor and one
on the active strut, provided both vibration suppression during slewing and disturbance
rejection.
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Modeling and Control of Intelligent Flexible Structure
- Smart Uses of Intelligent Structures

AFOSR Technical Report

1. Introduction

A great deal of attention has been generated in the past five years regarding the use of
smart /intelligent materials and structures. Much attention has been given to the technical
and scientific details of various materials, material systems and structural configurations.
Less attention has been given to the control aspects unique to such systems. The efforts
of the last year of this program have focused on active structures based on piezoelectric
devices used to control vibrations. A unique feature of the configurations considered here as
applications, is that the use of sensors and actuators integrated into structural components
may provide the only feasible method of suppressing undesirable vibration in such structures.

The effort of the second year of funding reported here has focused on a) on comparing
various control methods on slewing frames, b) on controlled systems with repeated or
nearly repeated natural frequencies as tiplified by ribbed antenna systems, and c) on using
a nonlinear controller to improve the efficdency of controlling coupled flexible-rigid body
vibration. The work reported here is largely experimental in that the control laws considered
are those proposed by other researchers in the theoretical community. However, some
modification of these methods is required in order to actually implement them.

2. Slewing Frames

Space frames present a useful model of the solar panel system common to most satellites.
They also present a rich theoretical abstraction of a fairly common practical problem which is
best solved by the use of smart structures. As an example of such a practical problem, recall
the Hubble Space Telescope (HST) experience. Rapid temperature changes induced rather
serious vibration in the HST;a solar panels rendering the telescope disfunctional for long
periods of time. The problem was eventually reduced to tolerable levels by implementing
active control using the panels rigid body actuator. However this problem could have easily
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been prevented by implementing a smart structural system in the original design. The basic
difficulty with the current design is that the rigid body actuator associated with rotating the
solar array and/or extending the solar array cannot control torsional modes of vibration, or
plate modes, and solar arrays are rich with such vibration. While the work presented here
is distinct from the HST configuration, the problem is generic to any solar panel on any

satellite system.

The problem statement is simple: how does one control torsional vibration. with a rigid
body actuator? The answer is that you don’t. Rather a smart structures approach is used.
The generic laboratory structure considered is given in Figure 1. This device simulates the
dynamics of slewing solar arrays. The modeling, hardware development and initial control
rievelopment for this structure is given in the previous AFOSR report [1] and is not repeated
kere. The modeling is also paraphrased in the appended papers [2,3].

A Slewing Axis
i
DC Moror and Tachometer

Concrete Ground

Active Member 2
oot'

Figure 1 The testbed for slewing solar panel dynamics and control

In the initial study of slewing solar arrays given in [1], the problem of the uncontrollability
of the torsional and plate modes was discovered in physical terms from testing. In the
subsequent year the lack of controllability was (ormalized using a number of criteria [4]. The
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results are summarized in Table 1 which lists the controllability index suggested by

Table 1: Relative controllability index for solar panel. The
larger the index the more controllable the indicated mode is.

Mode Motor Control Only | Smart Strut Only
1st Torsion 0.692 1.374
1st Bending 14.287 0.571
2nd Torsion 1.029 2.751
1st Plate 1.262 3.225
2nd Bending 6.513 2.808

Hamdan and Nayfeh [4]. Note that the torsional modes and the plate modes with the motor
(rigid body actuator) as the only control input have very low relative controllabiiity index
indicating that the primary rigid body actuator will not be able to easily control these modes.
The second column of the table indicates that by using an active member as just one of the
elements of the frame, the torsional and plate modes become controllable.

With the structural control system rendered controllable several control designs were
attempted and compared. First a performance comparison was made between collocated
and noncollated control. A second comparison was made between traditional proportional-
derivative control and u synthesis/ H°° methodology.

The initial study comparing the results of collocated versus noncollocated control involve
designing a controller that provides satisfactory step response (i.e., simultaneously slew the
frame and suppress vibration). Important performance criteria here include minimizing the
settling time and overshoot of the frame’s hub position as well as suppressing the structural
vibration induced during the maneuver.

Here three control laws are compared to determine if collocated or uncollocated control
configuration should be used. The noncollocated control configuration consists of using the
rigid body actuator as the control input and the smart structure as a sensor only. The
particular control law chosen to implement is the Generalized Structural Filtering (GSF)
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method proposed by Wei [5] coupled with PD control. This control configuration is compared
to a collocated configuration using the smart structure as both a sensor and an actuator.
The control law implemented in the collocated case is the Positive Position Feedback (PPF)
method [6,7] coupled with PD control. The results of these two implementations are given
in Figure 2 which also lists the results of using just PD control without a smart structure.
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(a) (b)
Figure 2 Comparison of collocated versus noncollocated hardware configurations
The figure shows clearly the following results
e PD control alone does not suppress vibration
e using the smart structure as a sensor only to produce noncollocated PD control using
GSF suppresses vibration, but does so at the expense of large overshoot and no stability
robustness with respect to model error ‘
o collocated control using PD and PPF give low overshoot, controls torsional vibration
and is robust with respect to model error
Details of this result can be found in Leo and Inman [8].
Now consider a comparison between two collocated, control laws: u-synthesis [9-10] and
PD control. Since it is the industry standard to model using finite elements (FEM) a finite
element model of the test structure is used here as well. The basic problem with FEM’s is
that they generally contain some error when compared with physical experiments. Hence,
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the control laws used must be robust with respect to model error, if they are to be applied to
real and/or experimental devices as is the case here. Two pointing control laws are examined:
e proportional derivative control
o a compensation design with u-synthesis combined wtih PPF

Basically, the PD controller is simple to design, and certainly a favorite of practicing
engineers, but lacks robustness. The i synthesis approach when combined with PPF
produces a high performance closed loop response with good stability robustness to
parameter uncertainties.

Pointing control and vibration suppression in a slewing frame structure was achieved by
designing two independent control laws. Vibration suppression of the first torsional mode
was attained by using a piezoceramic active member in a collocated feedback loop. The
Positive Position Feedback control law was robust against model error and increased the
damping in the target mode by a factor of ten. This is because the closed loop stability of
a PPF control law depends only on knowledge of the structure’s frequencies and structural
frequencies are the physical quantity which has the most accurate measure from tests. Two
separate pointing controllers were examined: a simple Proportional-Derivative compensator
and a more sophisticated design using u-synthesis techniques. Structural singular value
plots illustrated that the PD compensator was sensitive to the high frequency dynamics of
the frame. When experimentally implemented, this control law deata.blhzed the system as
predicted by the robust stability analysis. After changing the position and velocity gains,
the system remained stable but produced unsatisfactory results (16% steady state error or
55% overshoot). The pointing controller designed with u-synthesis techniques resulted in a
superior step response. During a 20° slewing maneuver, this design produced a step response
with 7% overshoot, 2 second settling time, and less than 2% steady state error. With the
supplementary PPF control loop closed, the structural vibrations were suppressed 4 seconds
after the hub position came to rest. Without the nuppleﬁm:tuy control, the frame vibrated
for over 30 seconds after the end of the slewing maneuver.
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The major contribution here is that the experimental implementation of a smart
structural control system requires a robust control formulation, and that smart structures
need to be used in controlling a certain class of devices with dynamics similar to those found

in solar arrays common to satellites.

3. Modeling and Control of Systems with Nearly Repeated Modes

Control of systems with repeated or nearly modes is a relatively common problem
addressed in the large flexible spacecraft discipline. Here, however a hardware solution
is proposed to this problem using the capability of smart structures. Modern control theory
calls for one actuator for each repeated mode. Here this is made possible by integrating
piezoceramic devices throughout the structure, using them as sensors and actuators and
developing an appropriate control and modeling scheme.

To explain this approach, an experimental model of an 8-ribbed antenna, common to
satellites is used. Figure 3 shows a schematic of the experimental test bed. Such antenna

Figure 3 An experimental smart antenna illustrating (at left) the bowed ribs and
(at right) the location and size of the integrated sensors and actuators

exhibit substantial repeated natural frequencies. Such structures, because of their unique
curvature, are difficult to model using standard finite element methods. Rather a lumped
model as pictured in Figure 4 is used. This model uses spring stiffners for the antenna’s
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Figure ¢ An 8 degree of freedom lumped mass model of the ribbed antenna in
the previous figure. The hub at the center is assumed rigid.

connections, torsional springs for hub connection and models the ribs themselves as lumped
masses. This model displays most of the important dynamics of the experimental apparatus.
Figure 5 illustrates a comparison between the analytical model obtained from Figure 4 and

18 =

Magasuds in dB (volvol)

Figure § Experimental (solid line) and theoretical transfer function (dotted line)
magnitude plots for the antenna.

the experimental magnitude plot of the structure. The agreement is very good in magnitude

but poor in high frequency phase. The details are presented in [11]. Two different control

schemes were used for implimenting active vibration suppression for this system. They are
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Positive Position Feedback (PPF) and the Active Vibration Absorber (AVA) method. Each
method takes advantage of the structure of second order system to claim closed loop stability
in the face of high gain. The work here shows that these two methods are related, as PPF
ir a subset of AVA and that AVA actually suffers from high gain instability when applied
to systems with unmodeled high frequency dynamics such as a ribbed antenna. This is
illustrated clearly in Figure 6. Each of these methods have been modified to take advantage

r PPF Constroller AVA Controller
System equations’ L+ Ok = glosx, R + ok = glax, - guix
X, +200% ro = R+ ax +aix, =x
e Ao da A
o g - axi-g
o] = T =
Physical analogy 2 A ME 3 WER ~ 1 J_E
(g=gain) - Lo - g ) o -
—?, ($ = X / (0 'od X
Clased loop block diagram : _] e R _J
EHeoe ey
Controller megnitude mag () oag (&)
vs frequancy
®, Y
fe freg
Root locus
Real Reni 7
TWhere:ng e @3, Ac= . Mg 0. Ag = 200, . TBuH SuBy ul. Hap'a. and for AVA Gy ugm? |

Figure 6 Comparison of PPF and AVA for the single degree of freedom case
of displacement feedback. Note the high gain instability for AVA.

of recent results in stability of second order systems by using symmetrizability conditions

(12] and new definite tests [13]. As detailed in [14], two second order contollers have been

developed and experimentally implemented on the antenna testbed. Theoretical stability
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bounds were also derived, with PPF control being conditionally stable and AVA control
being unconditionally stable. An important difference between the two types of control was
that a PPF filter rolls off at higher frequencies while the AVA controller maintains a constant
gain. The roll off characteristic of PPF is an advantage since it makes it less sensitive to
unmodeled dynamics. In real systems, that stability of the AVA control is determined by
the high frequency response of the structure, which is often not known with any accuracy.

Both types of control were successfully implemented on the smart antenna. The
performance of PPF and AVA were compared on a SISO design using one active rib. Each
design consisted of only one second-order controller since numerical simulations indicated
that there was no significant advantage in using multiple filters. Both types of control were
able to increase the damping in the target modes. PPF control produced better results
since it was not limited by unmodeled dynamics. Unfortunately, the SISO controller did not
adequately address the problem of repeated natural frequencies. A MIMO controller was
implemented using PPF control on ribs 1 and 2. Not only did not the MIMO controller
improve the overall performance, it was able to add damping to a repeated mode at 9.7 Hz.

4. Experimental Use of Nonlinear Controllers

A comparison between linear control and nonlinear countrol of a distributed parameter
system (experimental) consisting of a slewing flexible beam was performed. The experimental
research sought to determine the advantage of nonlinear control over linear control for a linear
distributed parameter system.

The strongest argument for using nonlinear control is that it can significantly improve the
performance over linear control schemes. This can be shown in simulations, where the step
response rise time, settling time and overshoot are significantly smaller than the response
when linear control is used. Lewis [15] showed the response of a second order system can
be improved by constructing a variable damping. He used position times velocity feedback
to eliminate overshoot and improve the settling time of a positional servomechanism. More
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recently, Castelazo and Lee (16] proposed using the same type of feedback to improve the
response of a slewing beam system. They considered a noulinear feedback, where state
positions and state velociites were multiplied. A heuristic method was proposed to tune
the nonlinear feedback gains and the resulting performance was better than the performance
provided by an optimal linear controller. They provided simulation results for a slewing beam
to verify the method. Others, such as Kuo and Wang {17}, have proposed using nonlinear
controllers to improve the robustness of a more complicated two link maniuplator.

Initially, the purpose of this work was to experimentally verify the simulation results
found by Castelazo and Lee. However, to insure global stability, their proposed feedback
required a simple modification. Also, implementing full state feedback is difficult and
as a result, proportional plus derivative feedback control, which lends itself well to
experimentation, was chosen for this purpose. Angular position and angular velocity are
easily measured on the experimental apparatus. The nonlinear feedback consisted of the
angular position times the angular velocity and the objective was to show that ths system
using nonlinear feedback provided better results than the system using the best available
linear feedback.

Table 2 Total Energy Input to the Motor for the Simulated 30°
Slewing Manuever using the Ientified Plant Model

Linear 17.4J
Nonlinear 12.1J
% reduction | 30.6%

Comparing this result to the theoretical model simulations shows a significant difference.
The maximum power for the theoretical model simulations was approximately 245 W and
for the pole zero model simulations, the peak power input was 95 W. For both models, the
motor current was the first constraint to be exceeded. That is, at some instant of time
for both models, the motor current exceeded its maximum allowed value. Therefore, the
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difference in the power plots lies in the simulated armature voltages. Along with this, the
energy consumption found in the theoretical model simulations was more than two times
that of the pole zero model simulations. These observations emphasize that the difference
between the two models lies in the mode shapes, which can be explained as follows. First,
the armature voltage is a function of the controller gains and the controller gains were much
larger for the theoretical model simulations. The magnitude of the terms in the theoretical
model feedback matrices were small (they are functions of the mode shapes), therefore, large
gains were required to produce adequate results. Large gains translate to large voltages
in the motor. This explains the sizable difference in the energy results. Also, much more
damping was present in the pole zero model, while the damping matrix of the theoretical
model (which is a function of the mode shapes) was small. Larger derivative feedback gains,
which are not necessary for the pole zero model simulations, are required for the theoretical
model to make up for this inadequacy. Perhaps including internal (material) damping in the
theoretical model or increasing the term corresponding to the bearing friction in the model
would produce closer results for the two models. For the simulations using the theoretical
model, increasing the feedback gains increases the motor voltage, resulting in larger energy
consumption results. These observations imply that the main difference in the models is

found in the a.saumed mode shapes and the lack of an internal damping model for the beam.

The simulation results using the pole zero model were the most promising results obtained
up to this point. These simulations used a model obtained from data of the experimental
system and therefore, they provide the most optimistic result that the simulated observations
can be implemented on a real system.

Simulations are valuable in examining the dynamics of systems. In this work, simulating
various forms of feedback and using different plant models provided valuable information
about the system before any experiments were attempted. A PD controller was constructed
for the slewing beam and an experiment was performed. Then, the nonlinear feedback was
added to the controller and another experiment was performed.
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It is important to note that this study was initially conducted to verify, through
experimentation, that the proposed nonlinear feedback control could be used to improve the
response of slewing beam systems. A natural extension of this investigation was to determine
the cost of the improvement in performance. There may be other control strategies which
provide similar responses while using even less energy. The purpose now is to show that it
is possible to reduce the energy requirements of this system with no loss in performance.
We have found through simulations and, as will be seen, through experimentation that even
when there is no visual improvement in the performance as measured with respect to settling
time or rise time or overshoot, there is a significant improvement in the energy required when
the proposed nonlinear control is used in addition to the linear control.

The controllers were implemented in the same manner as in the simulations. The beam
tip acceleration was measured and used as an indicator of the closed loop performance.
Angular position at the slewing axis was measured with a potentionmeter and angular
velocity was measured with a tachometer mounted at the motor and input to an analog
computer, where the PD and PD plus nonlinear controllers were constructed. An EAI 2000
analog computer manufactured by Electronic Associates, Inc. was used. The output signal
from the analog computer was amplified and input to the motor. A block diagram of the
closed loop system is given in Figure 7. The controller gains were adjusted until the fastest
settling time was obtained. The time responses are shown below for the PD controlled
slewing beam. The beam is given an angular displacement of 30° and slewed to 0°. The
beam tip acceleration versus time is shown in Figure 8. The instantaneous power versus
time curve was obtained by multiplying the time histories of the motor voltage and current
together.

The proportional gain determined in the experiments was the same as the proportional
gain in the pole zero model simulations. The derivative gain was smaller in the experiments
than in the simulations, since the settling time increased and the amplifier saturated when
higher gains were used.
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Figure 7 Closed loop PD plus nonlinear feedback control system.
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Flgure 8 Beam tip acceleration versus time.

These experimental responses are comparable to the simulated responses. In general,
the experimental result shows less damping than the simulation. The overshoot is larger and
the settling time is also larger than the simulation predicted. As mentioned earlier, it was
believed that the damping in the pole zero model was larger than the actual system. These
results confirm this belief. The settling times of the angular position at the slewing axis and
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of the beam tip are approximately 2 seconds each. Integrating under the power curve, the
total energy input to the motor for the PD controlled system was 16.3J.

Next, nonlinear feedback was added to the PD controller established above. The
nonlinear feedback is the absolute value of the angular position multiplied by the angular
velocity and the nonlinear feedback gain. The result is subtracted from the PD feedback
signal to obtain the nonlinear control system.

The settling times of the angular position and tip acceleration are seen to be
approximately 2 seconds. Integrating under the power curve, the total energy input to
the motor for the nonlinear feedback system was 13.7J.

The nonlinear feedback gain was set at a small value since larger nonlinear gains saturated
the amplifier. For the PD case only, setting the proportional and derivative feedback gains
lower produced time responses with larger overshoot and longer settling times. As a result of
the lower PD gains, the nonlinear feedback gain could be set to larger values and significant
improvements in overshoot and settling time were obtained, confirming the observations
discussed earlier. Thus, it was verified that the proposed nonlinear feedback control could be
used to improve the closed loop performance of the linear system. The plots are not included
here since the objective of this work was to find the best experimental PD controller, then
add as much nonlinear feedback as possible (before saturating the amplifier) and compare
the energy requirements of each system.

Consider the experimental time responses. The angular position and beam tip
acceleration settled in 2 seconds for both the linear and nonlinear control systems
implemented. There was a small decrease in overshoot in the angular position for the
nonlinear feedback result, but this is not readily apparent in the figures shown. In general, the
angular position shows an underdamped response for both the linear and nonlinear feedback
results. Now, consider the time responses of the beam tip acceleration. The nonlinear
feedback result shows a small decrease in magnitude of the peak accelerations. This is the
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same result noticed in the simulations performed.

Finally, the power plots that the system using nonlinear feedback required less energy
than the system using the linear feedback alone. The peak magnitude of the instantaneous
power input to the system decreased by approximately 10%. Integrating under the
instantaneous power versus time curves gives the total energy input to the motor during
the control maneuver. The results are shown in Table 3. A 15.6 % decrease in energy
resulted for the system using nonlinear control than for the system using linear control,
while the performance was virtually the same for both control methods. Therefore, it is
possible to add nonlinear feedback of the form proposed here to a linearly controlled system
and save energy, while obtaining the same performance in every other respect.

Table 3 Total Energy Input to the Motor for the
Experimental 30° Slewing Maneuver

Linear 16.3J
Nonlinear 13.7J
% reduction | 15.6%

Figures 9-12 illustrate the effectiveness of the nonlinear controller.

Power (Watis)

T T T T 1
0.0 05 1.0 15 20

Time (seconds)
Figure 9 Instantaneous power versus time.
Initially, the purpose of this work was to experimentally verify that a specific nonlinear

feedback control could be used to improve the performance of a closed loop system using
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Figure 10 Angular position at the slewing axis versus time (nonlinear feedback).
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Figure 11 Beam tip acceleration versus time (nonlinear feedback).
linear control. A slewing beam system was chosen to implement the nonlinear control.
Before experimenting with the system, simulations were run to find an acceptable controller
o implement.

Two different controllers were studied, an LQR and a PD controller. Simulation results
showed that large increases in performance (settling time and overshoot) for the nonlinear
system were not obtained within the system constraints. Usually, the motor current reached
its upper limit first. However, it was noticed that the control effort reugired by the system
using nonlinear control was less than that required by the system using the linear control.
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Figure 12 Instantaneous power versus time (nonlinear feedback).
The objective of this work then changed to experimentally verify that this type of nonlinear
control used less energy than the linear control when all other measures of performance were
virtually unchanged.

The PD result was verified experimentally. The best performance for the linear control
was an underdamped response. Adding the nonlinear feedback showed no significant
improvement in performance. However, when the control efforts were compared, the
nonlinearly controlled system required much less energy than the system using linear
control. The conclusion reached was that the nonlinear feedback control proposed here
can significantly save energy, even when no other change in performance is perceived.
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6. Review of Objectives and Status

The objectives of the proposed work for the second year of funding have been met. In
particular it was proposed to develop and experimentally verify and implement vibration
suppression control in coupled rigid flexible systems and systems with repeated modes.
This has been accomplished. It remains during the third year to publish these results in
journals and to finish implementing the nonlinear “smart”controller, as well as developing
the associated theory.
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CONTROL OF A FLEXIBLE FRAME IN SLEWING

Donald J. Leo
Daniel J. Inman

Department of Mechanical and Aerospace Engineering
State University of New York az Buffalo
Buffalo, NY, 14260

Abstract

Many satellites require the use of slewing solar panels.
A laboratory model of a slewing frame is presented here
as an article for testing control laws for such solar
arrays. A slewing frame presents a challeaging control
problem because the primary action of slewing induces
torsional vibration which is relatively uncontroilable
with respect 0 the slewing actuator. An experimental
investigation of controlling this structure for combined
slewing and vibration suppression is presented. The
frame is modeled using finite element methods verified
by experimental modal analysis. Analytical results
mdmmamemonalmononcanbesuppmsedby
including an active strut in the feedback loop. Non-
colocated and colocated control laws are implemented
using the active strut as a sensor and an actuator. The
relative effectiveness of each design in suppressing the
torsional motion is discussed.

1. Introdaction

In recent years, there has been a large amount of research
on slewing structures. These structures present
challenging control problems since the action of
slewing induces residual vibrations. These vibrations
can degrade performance when strict pointing and
tracking requirements are to be maintained.

Until now, most of the work has concentrated on the
slewing of flexible beams. For the most part, these
structures exhibit only bending motion whea excited (1-
3). Recently, research performed by Sakawa and Luo {4]
studied the control of a flexible beam with an ecceatric
tip mass. This tip mass induced torsional vibeations
when slewed, adding a new dimension to the control
problem. They preseated motor control schemes
designed to simuitancously slew the structure and
suppress vibrations.

This work will also examine the problem of slewing a
structure that exhibits bending and torsional vibrations.
The structure studied is not a flexible beam, though, but
a frame that models the dynamics of a solar array. The
torsional motion induced when slewed is relatively
ancontrollable using colocated motor control. Smart
structure technology will be applied in an attempt to
suppress this motion. Namely, a piezoceramic strut
placed in the frame will render these modes controllable.

A number of different coamol laws will be

experimentally verified.
2. Slewing Frame Testbed

A slewing frame was constructed to provide an
experimental testbhed for conorol. The frame coasisted of
thin-walled circular aluminum tbing (Figure 1).
Slewing acwation was provided by s Electro-Craft 670
dc motor. Angular rate and position seasors could be
used for analog motor control.

/acu-. P o—

Figure 1: Slewing Frame Testbed

An active strut was and inserted into the
slewing frame. It conmsisted of a flat aluminum bar
layered with four piezoceramics oa each sidg. Each
ceramic was a Model G-1195 from Plezo Electric
Products with dimeasions 2.5" x 0.75" x 0.01°. The
strut was configured 30 that it could be used as a seasor,
an actuator, or as a colocated sensor/actuator pair.
Figure 2 is a drawing of the active suut. The output
from the active strut is proportional 10 the strain induced
in the member. Coaversely, the active strut produced a
bending moment proportional to the command input.

A number of computers were available for control and
data acquisition. A Comdyna GP-6 anslog computer
mmed&rposiﬁmmnlofﬁeﬁmndmims
signal operations (summatios, subtraction, etc.)
Control laws for the active strut were i
anOpuma3dxgmleonuonemslmHz.
Finally, data acquisition and frequency analysis was
performed using a Tektronix 2630 Fourier Analyzer.
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Figure 2: Piezoceramic Active Strut

The objective of the experiments was to slew the frame
in a reasonable amount of time while minimizing
unwanted vibrations. Due o the configuration of the
structure, bending and torsional vibratdons were induced
when a maneuver was performed. The rest of this paper
will deal with the modeling and control aspects of this
problem.

3. Modeling and Analytical Resuits

A linear model of the slewing frame was developed so
that a number of control laws could be tested
analytically. In physical coordinates, this model took
the form (3]

e o

m
where M and K are the mass and stiffness matrices of

the structure, respectively, I is the rigid body inertia
about the slewing axis, and Iy is part of the interaction
between the rigid body and flexible motion. The
physical coordinates of the structare are denoted q, and
the rigid body rotation is symbolized by 0. fis a
matrix of applied forces and the overdot represents
differentiation with respect to time.

To correctly model the interaction between the motor
and the structure, pinned-free namral frequencies and
mode shapes were used. The mass and stiffness matrices
were built using finite elements and a modal test was
performed to verify analytical results [S]. By collecting
the normalized mode shapes into a matrix Sy, equation
(1) was transformed into modal coordinates by assuming
q = Sp r and premultiplying by Sm Y. This yields

(1] 1y |7 A] o
-] * N ¢[[ a] 0 " t={smTt}
13T 15 1e 0

@

A is a mamix of the form diag(w(2.0;2..aN2). and

Iy =SmT Ip. lisan N x N identity matrix, where N
is the number of flexible modes in the model.

The active strut was modeled as a moment generator [6).
For simplicity, it was assumed to span the entire length
of the stut. Although not a rigorous model of the
piezoelectric effect, it did produce satisfactory resuits.

To study the slewing frame, a 16 mode mode! was
developed using finite elements. The boundary
condition was chosen to be pinned-free, and the natural
frequencies and mode shapes were verified by a modal
test. Initally, a simple Proportional-Derivative (PD)
controller of the form

Gpd(s)=-Ky 6- Kp @ )

was used for position control of the frame. The gains
were set to values that produced an adequate step
response. Due to the nature of the boundary conditon,
this controller also added damping to certain flexible
modes. This occurs because the pinned-free condition
allows a large amount of interaction berween the
structure and the motor. In the model, the damping in
the motor is added to the flexible motion through the
applied loads vector f. Consequenty, derivative action
on the motor aiso produces an increase in damping in
the flexible motion. Results of an amalytical study
where Ky = 2.5 and Ky = 6.5 are given in Table 1. All
modes were initially assumed to be undamped.

Table 1: Natural Frequencies and
Damping Ratios in the flexibie modes using
PD motor control

Mode ogHz) | % Cxcmeal
Torsional | 4.37 041
8.87 11.24
Torsional 15.47 0.50 <
Plate 19.79 0.53
Bendin 27.53 5.10

This study reveals that a simple PD motor control adds
a significant amount of damping to the bending modes.
This is consistent with previous resuits [7]. Table 1
also shows that the torsional motion is still relatively
undamped.

In an atempt to coatrol the first torsional mode of the
slewing frame, an analysis was performed using the
active strut as a seasor and an actuator. Various control
laws were attempted. The two that performed the best
were Generalized Structural Filtering (GSF) and Positive
Position Feedback (PPF). Analytical designs were
obtained using the model. They indicated that the
damping in the first torsional mode could be increased to




5.7 % using the GSF method and o 8.5 % using PPF
control. Details of the actual designs will be presented
in the following section.

4. Experimental Resuits

Analytical results indicated that the torsional motion of
the frame was difficuit w0 suppress using colocated
motor control. Further smdies reveaied that by using an
active strut, these torsional vibrations could be rendered
controllable. Experimental results support these
conclusions and provide studies in the design of active
control systems for flexible structures.

Three levels of control were impiemented on the
slewing frame. The first consisted of a simple PD
compensator for the motor. This was necessary in order
to0 position the frame and suppress the bending
vibrations. Next, a non-colocated control law was
designed to adequately damp the dominant torsional
motion. Finally, a colocated controller using the active
strut was implemented and the resuits were compared to
the non-colocated case. Figure 3 is a schematic of the
overall control architecture.
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Figure 3: Slewing Frame Control Architecture

The first control law studied was a simpie PD

compensator of the form given in equation (3). The 8
term was the tachometer output, and 0 was the signal
from the poteatiometer. The reference command was a
step input of 1 volt. This corresponded w0 a 30° slewing
maneuver. The active strut was only used as a sensor
for these experiments.

A typical respoase of the frame position is shown in
Figure 4. The settling time for the slew maneuver is
about 6 seconds. In addition to controlling the position
of the frame, the PD compensasor has the desirable
effect of suppressing the beading motion.
Unfortunately, the torsional motion is still relatively

even with quite alot of derivative action on
the motor. Table 2 lists the natural frequencies and

damping ratios for the case of experimental PD control,
& shows that the colocated mosor control suppresses the
dominant bending motion but leaves the worsional mode
lightly damped. This trend is similar 0 the results
obysined analytically with the FEM model.
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Figure 4: Frame Step Response (Kp = 2.5, Ky = 6.5)

Table 2: Natural frequencies and damping ratios
for experimental PD control

4
Mgde og (Hz) | % Critical

Torsional | 432 0.82
| Bending 7.68 9.18
Torsional | _14.11 126
Plae 20.76 094

[(Bendng | 2635 | 132 |

During this maneuver, the sensor output of the active
strut during a 30° slew is shown in Figure 5. This
illustrates the lightly damped torsional mode. The 4.32
Hz vibration does not settle for over 30 seconds, well
after the slewing maneuver is over.

s

¢ eecamem e cmmmmeam - e o




-G Em SE SR R S N I N SR R R R OEEOEREE A

the motor input and the active strut output. A
commercially available Recursive Least Squares package
used the time domain data to obtain a poie-zero model
(9. From this model, root locus and Bode plots could
be used to design a compensator. The objective of the
design was to add damping to the torsional motion
without destabilizing higher frequency dynamics. In an
attempt to attenuate the high frequency content of the
control signal, it was filtered at 20 Hz with an Ithaca 24
dB/octave low-pass filter. A number of designs were
attempted, with varying degrees of success. Each design
was tested experimentally by feeding back the active
strut output int the dc motor and performing a slewing
maneuver. All but the final compensator caused
instabilities in the flexible motion when experimentally
implemented. The final GSF controller took the form

(5120+1) (s - 295 % j342)
(s/40+1) (s + 26.0 + j 30.4)

Ggﬂ S)= 0 (4)

Equation (4) is the combination of a simple lead and a
non-minimum phase filter. Figure 6 shows the
response of the structure during a 30° slewing maneuver
with GSF contol on. The torsional motion is
adequately damped out , i.e, by the time the slewing is
over (= 7 s), the vibrations have ceased.

Even though this method damps out the torsional
motion during a slew maneuver, the deadband in the
motor makes it ineffective for disturbance rejection. If
some type of input was applied to the frame (e.g.
thermal shock of a solar panel) when it was not
slewing, the controller could not react until it overcame
the static friction in the sysiem. Thus, the suatic
friciion limits the effectiveness of this non-colocated
control.
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Figure 6.  Structural response using GSF control
during a 30° slew.

To alleviate this problem, one of two things could be
done. Quite simply, the first solution is to reduce the
static friction by using beuer hardware. The less of a
deadband, the more effective this type of controller will
be. But since all real systems have static friction, a
more practical approach would be to pat both the sensor
and actuator on the flexible structure [10]. If this is
done, then the vibraton ion of the torsional
motion would be independent of the slewing actuator.
This colocated controller could suppress vibrations
during a slew maneuver as well as reject disturbances.
The last experiment deals with this type of design.

Conol using the Active S Cal 15
Acuator

The final congol strategy was 1o use the active strut as a
colocated sensor/actator. The design method was
Positive Position Feedback (PPF). It is a type of
second order filtering which has good robustness and
stability properties (11).

The objective is the same as before, suppress the
torsional motion without destabilizing higher modes.
For the colocated case, stability boundaries are much
better defined since the phase of the transfer function lies
between 0 and -180° over most of the frequency range.
Use of PPF control allowed for 2 much easier design
process. Only two iterations were necessary to obtain a
satisfactory result, as opposed to the five or n~eded for
GSF control.

of
Gpef(s) =0.7 2 +2{fors+ ap @
o = 33.14 radls Q‘s 0.15

Implementation of this control law increasc . the
damping in the torsional mode from about \.52% 0
3.8% critcal, almost a factor of § beuwer. The slewing
response (Figure 7) is not as impressive as the one for




the noa-colocated control (Figure 6), but it is
independent of the motor. With this type of control,
disturbence rejection is achieved since the active strut
serves as the actator as well as the sensor.

A 1

ume ()

Figure 7:  Suructural response using PPF control an
the active suut. Slew maneuver is 30°.

This last control experiment illustrates an important
point about slewing an active structure. The advantages
are that 2 number of separate colocated sensor/acmator
pairs can be used for both vibration suppression and
disturbance rejection. This aileviates the problem that
the static friction played when using non-colocated
control and allows more flexibility in designing control
laws. This was especially apparent in this case, since
the dominant torsional motion was not well controlled
by motor control alone.

5. Conclusions

The slewing of a structure that exhibited bending and
torsional motion was examined. An analytical model
predicted difficulty in suppressing the torsional vibration
using a colocated controller located at the slewing
actuator, This was experimentally verified on a testbed
that consisted of a flexible frame slewed by a dc motor.
An active strut was built by layering piezoceramic
material on a flat aluminum bar. This strut was placed
in the frame and a aumber of control experiments were
performed. A non-colocated controller was designed
using Generalized Suructural Filtering techniques. This
adequately suppressed the torsional vibrations but did
not provide any disturbance rejection due to static
friction in the system. Positive Position Feedback was
then implemented using the active strut as a colocated
sensor/actuator. Since this control scheme was
independent of the motor, it was not limited by the
stuatic friction. Having two separate colocated
controllers, one on the motor and one on the active
strut, provided both vibration suppression during
slewing and distirbance rejection.
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ABSTRACT

A testbed consisting of a flexible frame slewed by a dc motor is modeled for active
vibration suppression. This presents a challenging control problem since the primary
action of slewing induces both bending and torsional vibrations in the structure. Inserted
into the frame are two active members that can be used as self-sensing actuators in
feedback control loops. First, 2 model for the slewing frame is developed using Lagrange's
equations and finite element approximations. The interactions between the structure and
the slewing actuator are then derived from the equations for a dc motor. Similar
expressions are obtained for the forces applied to the structure by the active elements. A
detailed model of the self-sensing actuator is provided which includes the terms due to
actuator and sensor dynamics. A theoretical study is then conducted to obtain control laws
that simuitaneously slew the frame and suppress the residual vibrations. Simulation results
indicate that the dc motor is effective in slewing the frame and suppressing the bending
motion but not the torsional motion. Hence, the torsional vibrations are suppressed using

the active members in colocated feedback loops.




1. Introduction

The slewing of flexible structures is a challenging control problem due to the coupling
between the rigid body and elastic motion. The primary action of rotating the flexible body
induces vibrations that cause a considerable degradation in system performance. This
problem is important in the space structures community due to the high flexibility and strict

performance requirements of future space missions.

Much of the research performed in this area has concentrated on implementing active
control laws to simuitaneously slew the structure and suppress vibrations. Early work
performed by Juang, Horta, and Robertshaw (1986) examined the active control of a large
slewing beam. They developed a model for the structure and used a dc motor as the
actuator in a feedback loop. Vibration suppression was obtained by mounting a strain gage
onto the beam and using it as a non-colocated sensor. A similar approach was taken by
Garcia (1989), except that only angular rate and position signals were used for feedback
control. Simple Proportional-Derivative control laws were able to suppress the vibrations
of a slewing beam due to the large interaction between the motor and the structure. A
Lyapunov based control strategy was developed by Junkins, Rahman, and Bang (1990) for
the reorientation of a rigid hub with four flexible appendages. An improvement in
performance was achieved by shaping the input to the slewing actuator. Another
Lyapunov based method was introduced by Fujii, Ohtsuka, and Udou (1991).
Experimental results were presented indicating that vibration suppression could be

improved by using a method they called Mission Function Control.

In all of the previously mentioned work, the slewing actuator was used to
simultaneously rotate the structure and suppress vibrations. This strategy was effective, in
part because the structure being slewed was a simple beam. If the structure exhibited more
complex dynamic behavior, the slewing actuator might not be able to suppress all of the




flexible modes. It would be desirable, and in some cases even necessary, to have separate
sensors and actuators available for feedback control.

Recent advances in smart structure technology provide a means for integraring
actuators and sensors into a slewing structure.  This is accomplished by replacing passive
members of the structure by active elements. The active members contain piezoceramic
material, thereby enabling them to be used as sensors and actuators for control. Recendy,
Dosch, Inman, and Garcia (1992) demonstrated the concept of using a single piece of
piezoceramic to simultaneously sense the vibrations and apply a moment to a candlever
beam. This is important in the contol of flexible structures since the resulting sensor and
actuator are perfectly colocated with one another. With regards to the slewing problem,
Garcia and Inman (1990) showed that integrating a piezoceramic sensor/actuator into a

slewing beam can improve performance and reduce the peak power of the motor.

This paper examines the modeling and control of a slewing structure that contains
integrated actuators and sensors. The structure is not a beam, but a frame that modelis the
complex dynamics of a flexible appendage such as a solar array. Two of the passive frame
members have been replaced with active elements: aluminum bars with piezoceramic
material bonded to the surface. Characteristics of the piezoceramics allow these active
elements to be used as colocated sensor/actuators. The active members are an integral part
of the control system since the torsional motion of the frame is not suppressed by the

slewing actuator.

The paper is organized in the following manner. First, 2 model for the frame is
developed using Lagrange's equations and finite element approximations. The interaction
between the structure and the motor is obtained by considering the equations for a dc

motor. A model of the active members is developed which includes the dynamics




. . . . .

associated with a self-sensing actuator. Finally, control system design for the slewing

frame is studied using the model and the actual parameters of the testbed.
MODELING OF A SLEWING STRUCTURE USING FINITE ELEMENTS

The model for the slewing frame is derived from Lagrange's equations and finite
element approximations. The advantages of using the finite element approach is that it can
easily handle the complex geometry of the frame. The governing equations for the
complete structure are obtained by first considering a single element slewing about an axis,

as shown in Figure 1.

The motion of this element consists of a rigid body rotation, @ (z), and an elastic

deformation, #(%,z). A torsional rotation about the £ axis also exists, and is denoted
#(%,7). The two ends of the beam are called the nodes of the element. Node i is a fixed
distance 7, from the origin of the inertial coordinate system, XYZ. The rigid body is
constrained to lie in a plane, xz, which is rotating with respect to the Z axis with an angular

velocity 6(z).

Another set of coordinates, the xyZ frame, is attached to the rigid body of the slewing
element. The origin of XjZ is chosen to be Node i and £ is the centroidal axis of the rigid
body. Since the element is constrained to be in the xz plane, the y and § axes are parallel.
Thus, the orientation of the element with respect to the rotating xyz frame can be described
by a single angle ¥.

The arbitrary deformation, @(%,¢), and torsion about the £ axis, @(%,s), can be

expanded into the following form:

a,
i(x,t)=|a |=Y (2)q(
(£,0)=|4, (#)a(r) "

a
B(%,1) ="¥,(£)i(r)




where §(r) isa 12 x 1 vector of independent generalized coordinates. The matrix ¥, (%)
is a 3 x 12 matrix of basis functions, and ¥,(£) is a 1 x 12 vector basis functions [Cook
and Malkus (1989)]. The set of generalized coordinates are chosen to be the three
translations and three rotations at each node of the element. This choice assumes that the

rotations are small, i.e., they can be added as vectors.

The Lagrangian of this slewing element is obtained and Lagrange's Equations are used
to derive the governing equations [Leo (1992)]. They take the following form:

M i, |[dn)] . [K o d(:)}=. )
[TI iH%)}{o o]{e(:) Q.+Q. @

where M and K are the 12 x 12 mass and stiffness matrices of the finite element,

respectively. The structural inertia of the element about its slewing axis is denoted f, and
i, is a 12 x 1 vector that couples the elastic deformation to the rigid body rotation. The
non-conservative forces due to the motor and the piezoelectrics are denoted Q, and Q pr?
respectively. The assumptions made during the derivation are that the element can be
modeled as an Euler-Bemnoulli beam, that the cross-section is symmetric, and that the
geometric and material properties are independent of X. The expressions for each of the

terms in equation (2) is placed in the Appendix of this work.

The governing equations of the slewing frame are assembled from equation (2) by

&) [a) fc, o [B. 0
{e(r)} ‘CB{em} C‘[o 1] B'[o 1] @

into the expression and pre-multiplying by BTC”. The matrix C, is the transformation

substituting

between the element coordinates and the global frame of reference. The operator B,
transforms the element coordinates into the corresponding global degrees of freedom. It
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has the dimension 12 x N,,, where N, is the number of degrees of freedom in the
complete model. The final set of equations has the form

L[d@) 01(q(s)
[1;; 1, ]{O(t)}+[§ 0]{8(:)} =Q.+Q, 4

N, . N, -
where M=) BICIMC,B,  K=) BICIKC.B,
im] im]
N, " N,
L= ZB:C:Iu I,= 21.-
i=| imt
N, " N, -
Q.=3BC4. Q. =XBC4,
i=ml im]

The number of elements in the slewing model is denoted N,. The assembly of the
governing equations is more computationally efficient if the direct assembly approach is
used [Cook and Malkus (1989)].

2. Modeling the Motor/ Structure Interaction

Modeling the interaction between the motor and the structure has always received
considerable attention in the slewing literature [Juang, et al, (1986), Garcia and Inman
(1991)]. The derivation presented here is similar to the previous work is most respects,
except that earlier research concentrated on obtaining expressions for distributed parameter

systems, not finite element models.

First, consider the model for a DC motor shown in Figure 2. The motor is connected
through a set of gears to the slewing structure. The armature voltage and current are
denoted e,(r) and i,(z), respectively. The pertinent motor parameters are the inductance, L,
the resistance, R,, the torque constant, K,, and the back-EMF K,. The motor has an inertia
I, and a viscous friction coefficient B,. A set of gears with ratio N,/V, are placed between

the motor shaft and the structure. The rotation of the structure is denoted 6,(z). The




expression for the torque produced on the structure can be derived from Kirchoff's laws
and summation of torques [Kuo (1987)]:

t=N K () - I.N*6,(t)- B,N36,(z) )

where the armature current is related to the command voltage by

L2 s R ) =-BN 8,00+, (0) ©®

For convenience, the gear ratio N;/V, is denoted N,.

The next step is to choose a boundary constraint for the finite element model. For the
slewing frame, the boundary constraint is chosen to be pinned-free. Thus, the rotational
degrees of freedom of thé shaft that lies along the slewing axis are unconstrained. These
are the 6,(2) rotations, using the notation of the previous section. Assuming that the torque

acts at the i* node of the structure, the total rotation at that node can be written as:
6,(t) = 6,,(r) + 6(z) )

A diagram of this concept for a single element is shown below in Figure 1. The total
rotation at the root is a combination of the rigid body rotation and the rotation due to the

flexibility. The non-conservative virtal work due to the motor torque, dW,,, is

oW, = 180,(r) = ©66,(t) + ©66(r) £:))

Equaton (7) can be rewritten as a vector muitiplied by the generalized coordinates of

the system

a0=0.0+00=F:{ 30} ®

where the 1 x N, vector FT has a one in the i* column and a one in the last column.




The virtual work can now be written as

monlS

where tF7 = Q_ from equation (4).

With the expression for the virtual work, the equations of motion can be rewritten as:
M L, }4() 07fa(»)) _
[ AT A M B RS S

Equation (9) is substituted into the DC motor equations to yield

s - )
dz di ()

— 0
pr =+ Ri(t)=~-KN F_{ é(t)}-l-e.(t)

(12)

These expressions are substituted into equation (11) and, after some manipulation, they

can be written as

M1 i(e) 90|  [K 0}fq()] _ .
{[II 1] + NIG}{ }”"” (C {eo} [o 0 e(r)}‘F'K'" )+ Qp

(13)
di (t) . - T q(t)
L —< % +Rj,(¢) K,N,F_{ é) +e,(2)
where G,, is the gain matrix associated with the motor. It has the form
T Gul : an .
G. = F.F- = -G-r--r"G" G-g 18 Oldcqu XNq (14)
: m2 1 “m3




One final step needs to be performed to obtain the open loop model of the slewing
frame. Since the boundary constraints are chosen to be pinned-free, there exists a zero
frequency mode in the mass and stiffness marrices. This mode is already accounted for by
the rigid body coordinate, 6(¢). To eliminate this redundant mode, equation (13) is
transformed from physical coordinates into modal coordinates. This transformation is
calculated by solving the following free vibraton problem [Inman (1989)]

{M+N1.G_ Ji(r)+Kq() =0 (15

and normalizing the mode shapes such that

si{M+NG. ]S, =1

(16)
STKS,=Q= diag(a),?)

where S, is a matrix of the elastic modes of the frame. It is not square since the zero
frequency mode has been eliminated. The squares of the remaining non-zero natural
frequencies, deroted 2, are the diagonal elements of the matrix Q. Equation (13) can be

trarsformed into modal coordinates by substituting the following transformation
q()| _[S. 0]fr(e)] _ . [r(®)
{e(:)} 5 1He(:)}'T{e(:)} an

into the equation and pre-multiplying by T7. The result is

I SI(1, + NG, ) |[¥() . iz)
[( #NAGL)S,  L+NU, }{é‘(z)}*{T BN,T +D"'}{é(:)}

Q 0}[r()]| _.r ) r
{0 0 0(:)}_T F KN ()+TQ,

(18)

r(t)

di (1) CoN
L, —Zt— +R,i (f)=-K ,N,F:T{ o)




A damping matrix, D,.,, is added to the system to account for the inherent damping in the
structure. It is a diagonal matrix of the form

D, 3[41'48(34.-0:) 0]

0 (19)

where {; are the modal damping rarios.
3. Modeling of the Self-Sensing Active Members

One of the major issues of this study is the ability of smart structure technology to
improve the performance of the slewing frame. As mentioned in section 2, two members
of the frame have piezoceramic material bonded to the surface, thereby enabling them to be
used sensors or actuators. To model these active members, expressions for voltage output

and applied moment of the piezoceramics must be developed.

The actuator equation is derived for a pair of piezoceramics bonded to a flat beam, as
shown in Figure 3. Assuming that the beam is in pure bending, the expression for the
moment applied by the piezoceramics is [Dosch, et al, (1992)]:

M(%,6)= Ky, () (- )~ h(z - 2,)] (20

where £, and £, are the location of the ends of the piezoceramic pair. The heaviside step
function defines the region of th- . ..m covered by the piezoceramics. The applied voltage
is denoted v, (¢) and the actuator .. ustant, K, is expressed in terms of the geometric and
material properties of the beam and ceramic:

K, =bd,Y,(t, +1,) (21)

The thickness of the piezoceramic and the strut are denoted ¢,, and ¢,, respectively. The

width of the strut is labeled b, and Y, is Young's modulus. The dielectric constant of the
ceramic is denoted dj,.




The expression for the virtual work produced by the pair of piezoceramics is [Fanson
(1987)):

L -
W, =5 M(i,t)il%—g—’gdi 22)
0
where L is the length of the beam.

Substituting for x‘i,(i,t) as defined in equation (1), the previous expression can be

rewritten as
L
= [ M(2,0{ w7 (2)64()]a (23)
Q
The superscript i indicates that the expression is for the i* piezoceramic pair, and the prime

notation signifies differentiation with respect to £. Integration of the preceding equation
yields

= Ky, () ¥, (£) - ¥, (#)]sdte) 24)
The virtual work done by all four piezoceramic pairs is

v.(r)z{‘r' (B)-vE)pie e

Equation (25) assumes that all of the piezoceramics have the same actuator constant and

applied voltage. The expression can be transformed into global coordinates by substituting
64(r) =C,B,5q(z) (26)
into the equation. This leads to
. 4 .
W, =Ky, ()Y (¥, (&) -¥,(%)c.B.5q() @n
il
The non-conservative wark term associated with the active strut can now be written as

10
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=F Kv,(0)

(28)

A similar expression is derived for the voitage output of the active member, v(f). The
expression is

v.(r)=K.[@g’") _a.z,g,,:)] 29)

where

K,= Zz%’.lﬂ Volt/rad

4

the term y. is the distance from the neutral axis of the strut to the middle of the ceramic and
C, is the constant strain capacitance of the material

Performing an analysis similar to the one for the actuator equation results in the

following expression for the piezoceramic voltage of the active strut:

1nl)= K S 8) - ma0)

_ q(¢)
-K,F;{ p (:)} (30)

=K, F :T{ ;((3}

4. Dynamics of the Self-Sensing Actuator

The idea of using a single piezoceramic to simultaneously sense and actuate was
previously presented by Dosch, Inman, and Garcia (1992). The importance of this concept
is that the actuator and sensor are perfectly colocated. Sensor/ actuator colocation is very
auractive when designing active control schemes for flexible structures since it is inherently

11




more stable than non-colocated control. Self-sensing actuation is accomplished by the use
of a bridge circuit connected to the piezoceramic active member. Use of this circuit

introduces dynamics into the feedback loop that can have an effect on the open and closed
properties of the system.

The circuit studied in this work was originally presented by Dosch, et al (1992) as a
means of simultaneously sensing strain and applying a force. Other versions of this circuit
are able to sense strain rate, but for this work, only the strain sensor is examined (Figure
4). The sensor voltage is the difference between v, (z) and v,(¢), which are the voitages at the
two terminals shown in Figure 4. In the Laplace domain, the sensor voltage is

_ RC.s RC.s _ RCs
vy vl ‘{1+R(C;+Cz)s T RG+Cs | ) @D

Likewise, the voltage applied to the piezoceramic is the difference between v (r) and
W (t):
RCs RC)s
V.(s)
1+ R(C:+C,)s 1+R(C; +C,)s

___1+RCs ____RCs
1+R(c;+c,)sv‘(‘) 1+R(c;+c,)sv"

V(s)=V.(5) '[ Val(s)+

(32)

(5)

The result of equaton (31) can be substituted into the previous expression. After
manipulation, the actuator voltage can be written

- 1+RC,s
1+R(C;+C,)s

Va(s) V.(5)-V,() (33)

A block diagram between the control voltage, v.(7), and the self-sensing output, v,(?), can be

obtained from the results of the previous two sections (Figure 5). In Figure 5, the

following notation is used:

12




1+RC,s
1+ R(C; +C.)s
- RC.s
1+R(C: +C,)s
RHC,C. -GG ) +R(C, - Cy)s

E\(s)= ﬁ+ R(C; +Cz).ql + R(C: + C‘)S]

E(s)=

E(s)

The block diagram of the self-sensing actuator illustrates the dynamics associated with
using the circuit in a feedback loop. The actuator voltage across the piezoceramics is a
combination of the input voltage and a feedback proportional to the sensor signal.
Similarly, the output of the circuit is a combination of the piezoceramic voitage and an
input feedthrough term. Nominally, the circuit parameters are chosen such that C, =C,
and C, = C,. In this situation, the feedthrough term is identically zero and the sensor output
is simply a high-passed filtered version of the piezoceramic voltage. The comer frequency
of the high-pass filter depends on the constant strain capacitance of the strut and the choice
of C,. The actuator dynamics have the form of a lag filter, thus attenuating the high
frequency content of the control signal. Even in the nominal case, the sensor output

feedback term is stll present in the open loop dynamics.

Of course, the circuit parameters are not always tuned perfectly to one another. In the
original work by Dosch, et al (1992), this situation is referred to as a 'mismuned’ self-
sensing actuator. Not tuning the parameters correctly can have a significant effect on the
transfer function between the control voltage and the sensor output [Anderson, Hagood,
and Goodcliffe (1992)]. Studying the problems associated with mistuning the circuit is a
direction for future research. A simple consequence of capacitor mismatch is illustrated in
the simulations later on in Section 7 of this paper.

13




§. The Slewing Frame Testbed

A frame slewed by a dc motor is presented as a testbed for experiments in the control
of slewing flexible structures. Due to its configuration, the action of rotating the frame
about an axis causes both bending and torsional vibrations. The frame consists of
individual elements of thin-walled circular aluminum tubing. Each member is 0.635 cm in
diameter and has a wall thickness of 0.124 cm. The elements are joined at octagonal nodes
that are also made of aluminum. Each member is pinned and bolted into the node to
climinate looseness in the joints. The frame is mounted onto the larger steel shaft by
bolting two of the nodes into aluminum clamps.

The slewing acmator is an Electro-Craft 670 dc motor. The shaft of the motor is
coupled to a steel shaft with a diameter of 0.635 cm, which in turn is connected to another
steel shaft of diameter 1.270 cm. The smaller shaft can easily be removed so that gears can
be placed between the motor and the structure. A tachometer housed inside the motor
measures angular rate, and a potentometer attached to the bottom of the larger steel shaft
produces a signal proportional to angular position. The whole slewing rig is attached to a
large concrete block that serves as ground. Figure 6 is a diagram of the slewing frame
testbed.

Two of the passive elements of the frame have been replaced by active elements. The
active members are flat aluminum bars that have four strips of piezoceramic material
bonded to each side (see Figure 3). The piezoceramics are model G-1195 from Piezo
Electric Products and have dimensions 6.350 cm x 1.905 cm x 0.025 cm. Each ceramic is
glued to the member with Duro Depend II adhesive. All of the piezoceramics are
electrically coupled to one another to create one sensor/ actuator. On both active members,

the aluminum beam is used as a ground for the underside of all the ceramics.

14
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The parameters for both the dc motor and the active members are listed in Table 1.
Table 1: Parameters for the slewing actuator and active members,

d, 190e-12 m/Volt K, 0.11298 (N-m)/Amp
b 0.0254 m K, 0.11298  V/rad/sec
y. 286e-3 m I, 3534 kg_mz
C; 0275¢-6 F L, 0002 H
t, 3.175¢3 m R, 0.63 Ohms
r, 2.54e4d m Y, 63e¢l0 N/m?2

6. Open Loop Mod=ling Results

To validate the open loop model, analytical results are compared to experimentally
obtained frequency response functions. Magnitude plots of the slewing frame are
determined by inputting a random signal of bandwidth 20 Hz into the motor and
measuring the tachometer output and sensor voltage of active member 2. A Tektronix

2630 Fourier Analyzer performs the data acquisition and frequency analysis.

Results of the open loop tests and the corresponding analytical transfer functions are
shown in Figure 7. For the analytical results, the first 20 modes of the FEM model are
used and a proportional damping ratio of 0.001 is assumed. In the case of the tachometer
output, the model is very accurate over the frequency range considered. The damping
exhibited in the mode at approximately 7.1 Hz is due to the dry friction in the motor and
bearings. This phenomenon only occurs in the region around the zero position of the
frame. During a maneuver, this mode is lightly damped since the motor is free from the
dry friction. The model of the transfer function between the motor and active member 2
shows adequate fidelity over approximately the first 10 Hz. Subsequent error is attributed
to the sensitivity of the expression for the sensor voltage (equation 30) to the position of the
four actuators along the active member. Also, the model for the sensor voltage of the

piezoelectrics is only an approximation, since it assumes that the piezoelectrics are in pure
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bending and neglects effects such as the bonding layer. In spite of this, the model
maintains the correct pole-zero pattern over the 0 to 20 Hz frequency range. Comparing
the analytical to the experimental transfer functions illustrates that any control law must

account for the uncertainties that exist in the model

The transfer function between the motor and the tachometer reveals that the first
torsional mode at 4 Hz is not very prominent. This has ramifications in the control system
design, since this indicates a pole-zero cancellation at that frequency. Pole-zero cancellation
does not occur between the motor and the active member, though, leading to a large peak
on the magnitude plot at 4 Hz (see Figure 7b). These features can be related to the
controllability and observability measures of the motor, tachometer, and active member
[Inman and Leo (1992)]). Their effect on the control of the slewing frame is presented in

the next section.
7. Control Simulations

The objective of this study is to develop control schemes for the slewing frame. The
primary action of the frame is a rotation about its slewing axis, which, due to the flexibility
and low inherent damping of the structure, induces vibrations that do not decay for a
consideralle amount of time. Using the mode! developed in this paper, control laws are
designed that simultaneously slew the frame and suppress the vibrations. The control
simulations are divided into two sections. The first simulation involves designing a
controiler that provides satisfactory step response. Important performance criteria include
minimizing the settling time and overshoot of the frame's hub position, as well as the
structural vibrations induced during the maneuver. A second section involves control
design for a tracking maneuver. Here, it is important to keep the emror betwsen the input
command and the hub position within a prescribed tolerance while simultaneously

suppressing the residual vibrations.
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Control Design for a Step Input

First consider the case of designing a controller to obtain satisfactory step response of
the frame's hub position. The input command to the motor is constant at 0.742 volts,
which corresponds to a 15° slewing maneuver. Three designs are studied. The first is a
simple Proportional-Derivative controller using the slewing actuator and angular rate and
position feedback. The second control law has a non-colocated control loop using active
member 2 in addition to the PD compensator. The final control scheme involves two
separate colocated controllers, one loop closed around the motor and the other loop closed
around active member 2. All designs are performed using the nominal model shown in
the previous section. Robustness is checked by closing the control loops around models
that have slightly higher and lower natural frequencies [see Table 2). While not an
exhaustive search, this check is an indicator to how well the controllers can tclerate
uncertainty. As pointed out in the previous section, errors in the model do exist and must
be accounted for in the control design.

Table 2: First three natural frequencies (in Hz) for the nominal model, the open loop experiment,
and the permurbed models used for stability analysis during the simulations.

Nominal  Exp. Model1 Model 2
1st torsional 421 3.97 4.33 4.09
1st bending 7.17 7.12 7.33 7.00
2nd torsional  13.90 14.24 14.30 13.53

Proportional-Derivative Control

The procedure for designing this type of controller is rather straightforward, since both

angular rate and position measurements are available. The form for the control law is

e, (1) =K,[6,, - 0()] - K,6(:) (34)

where 6() and 8(¢) are the outputs of the potentiometer and tachometer, respectively. The

reference voltage, 6.y, is set to 0.742 volts, a command for a 15° slew. After iterating on
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the controller gains, values of K, = 2.5 and X, = 40 produce a satisfactory step response
without exceeding the voltage limits on the motor (see Figure 8). The overshoot of the hub
position is less than 5 % and the settling time is approximately 4 seconds.

The importance of examining this control design lies in its inability to suppress the
torsional motion of the frame. This results in substantial residual vibrations after the end of
the slewing maneuver, as illustrated by the output of active member 2 in Figure 8. This
problem is due to the pole-zero cancellation that occurs in the transfer function between the
motor and the tachometer/ potentiometer outputs (the potentiometer output is essentially the
integral of the transfer function shown in Figure 7). As listed in Table 3, the PD
compensator successively adds damping to the first bending mode, but leaves the torsional
modes lightly damped. The ability to suppress the bending motion of the frame is due to
the large interaction between the motor and the structure, as evidenced in the open loop

magnitude plots (Figure 7).
Proportional-Derivative Compensation with Supplementary Non-Colocated Control

A natural extension of simple PD control is to use an active member as a non-colocated
sensor for a supplementary feedback loop. The function of the supplementary control is to
suppress the torsional motion of the frame while the PD compensator provides a
satisfactory step response. Using the active member in this manner leads to the design of a
control law for a non-colocated sensor and actuator. Similar actuator/ sensor arrangements
have been used in the past [Juang, er al, (1986), for example], but with different design

strategies and on structures that did not exhibit torsional vibrations.

Control law development is performed using a method called Generalized Structural
Filtering (GSF). A detailed treatment of the GSF method is presented in Wie and Byun
(1989). In its basic form, Generalized Structural Filtering is a classical control approach o

active vibration suppression in that frequency domain and root locus techniques are used to
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find a suitable compensator. The design for the slewing frame is accomplished in the
following manner. First, the model is used to find the transfer function between the motor
input and the output of active member 2, with the PD control loop closed. Closing the first
loop is important since it greatly effects the dynamics of the structure. The first stage of the
design involves introducing a fourth order Butterworth Lowpass Filter into the forward
loop with a comer frequency of 20 Hz. This attenuates the high frequency content of the
signal but causes substantial phase lag in the target region, 0 to 20 Hz. Following the
procedure outlined in Wie and Byun (1989), a lead filter is then placed in the compensator
to recover phase around the frequency of the first torsional mode (4 Hz). Finally,
parameters of a non-minimum phase second order filter are chosen to actively damp the

first torsional mode. The final form for the conool law is

e.(1) =2.5[0,, — 6(s) ~ v, (+)] - 406(z) (35)

where v,4(¢) is the output of the GSF compensator. In the Laplace domain, it takes the

form

S S
0.025 —————+1{-=+1
(15.8ij42.1 20 )

14 =
wr () p p . . )V,.z(S) (36)
—+1 —+1 — +1]—+1
48.1+ j116 116+ j48.1 14t j37.5 40

A root locus plot for the GSF desiga is shown in Figure 92. From the roots locus, a gain

of 0.025 is chosen since it increases the damping in the first torsional mode. An important
feature of the root locus is that the damping in the first bending mode is being decreased as
a result of the supplementary control loop. This is an unattractive feature of this method.
The time responses of the slewing frame with supplementary control are shown in Figure
8. The rigid body response has slightly greater overshoot due to the added control effort in
the motor. The motor voltages with and without supplementary control are similar,

although a higher frequency component is added to the input due to the GSF compensator
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(Figure 8b). The marked difference with this control scheme is the suppression of the
residual vibrations in the frame. With the supplementary control, the structural vibrations
are negligible at the end of the slewing maneuver, which contrasts sharply with the case
when there is only PD compensation (Figure 8c). The addition of the non-colocated GSF
controller enables the suppression of the first torsional mode of the frame.

The robustness of tiis control strategy is checked by closing the loop around the
perturbed models shown in Table 2. For both cases, an instability in the first torsional
mode results. This is illustrated in Figure 8d, where it shows that the frame is stll
vibrating almost forty seconds after the slewing maneuver is over. This vibration is due to
the mode at 4 Hz being marginally stable. Checking the robustness in this manner
indicates that the non-colocated control design is sensitive to the uncertainties that are
bound to exist in the model. Attempts at redesigning the control law in light of these
results could be made, but a more practical approach to achieving performance and

robustness specifications is detailed in the next section.
Proportional-Derivarive Compensation with Supplementary Colocated Control

The final design for satisfactory step response uses active member 2 as both a sensor
and an actuator to provide vibration suppression. As in the previous case, a PD
compensator is used to slew the frame, with the colocated control loop acting as
supplementary feedback. The control law chosen for the active member is Positive
Position Feedback. Much like the GSF method, Positive Position Feedback (PPF)
consists of second order filters tuned to suppress specific structural modes. For a detailed
treatment of the design procedure, the reader is referred to Fanson and Caughey (1987).
PPF control is chosen since it is easy to design and is robust with respect to unmodeled
dynamics [Goh and Caughey (1985)]. It has also been experimentally implemented in




I‘
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previous work [Fanson and Caughey (1987), Dosch, er al, (1992)]. In the Laplace
domain, the form of the PPF controller is

N 2
V.(s)={i s }V.(s) a7

S 5%+ 20,0, + @}

The parameters for the filter design are found using root locus techniques (see Figure 9b).
The design procedure for PPF control is more straightforward than for the GSF method
and requires much less iteration. In this case, the first torsional mode is targeted for
suppression. An important feature of the control law is that the spillover into the high
frequency modes of the system is almost negligible due to the controller roll-off. This
contrasts with the GSF design, which decreases the damping in the first bending mode.
After performing the analysis, the following control law is obtained

e,(r)=2.5[6,, - 6(s)] - 406(s)

65(29)° (38)
5% +2(0.08)(29)s +(29)* Vials)

VCZ(S) =

The first part of equation (38) is simply the PD compensator designed in the previous
section, the second part is the PPF controller using active member 2 as a colocated sensor/
actuator. A simulated slewing maneuver is shown in Figure 10. The hub positdon
response and motor voltage are essentially the same with and without PPF control. This is
to be expected since the feedback loop is independent of the motor. With the
supplementary control loop, the structural vibrations in the frame are suppressed by the
time the slewing maneuver is over (Figure 10c). The damping out of the torsion is not as
fast as with the GSF controller, but this is due to the fact that the motor is a much more
powerful actuator. During the design, the achievable damping was limited by the peak
value of the active memb 't control effort, which is approximately 100 volts (Figure 10d).
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Two robustness tests are performed on this control scheme. The first check is to close
the feedback loops around the perturbed models listed in Table 2. For both cases, the
system remains stable. This represents a major advantage over the non-colocated control,
which results in an unstable system in the presence of model error. A second robustess
check is performed by intentionally 'mistuning’ the self-sensing acmator capacitor values by
+5%, £10%, and #20%. Again the system maintains stability, but performance is
adversely affected. The damping achieved by the PPF design is sensitive to the mistuning
of the self-sensing actuator circuit. The settling time of the structural vibrations is increased
from 4 seconds to slightly over 10 seconds if the capacitor values are off by £10 % (Figure
10c). This mistuning also increases the control effort of the active member (Figure 10d).
Sensitvity to capacitor mismatch could represent an obstacle to implementation of the
circuit in future experiments.

Table 3: Comparison of the results for the three separate simulations.

Control Law PD PD + GSF PD + PPF
Damping (%)
1st torsional 02 82 4.3
1st bending 6.1 4.8 6.1
2nd torsional 0.4 0.5 04
Rigid Body Response
settling time (seconds) 4 seconds 4 seconds 4 seconds
overshoot (degrees) 0.7 1.1 0.4
Stability Robustness! Yes No Yes2

I Defined as being stable with the perturbed models listed in Tabie 2.
2 Capacitor mismatch causes loss of damping in torsional mode, but not instability.

Discussion of the Simulation Results

These simulations indicate the inability of a motor control law to suppress the torsional
motion of the slewing frame. This is a result of a pole-zero cancellation that occurs
between the motor input and the angular rate and position seasors. Physically, this means
that the interaction between the input torque and the torsional modes is small. These
modes can be suppressed, though, by integrating actuators and sensors into the structure.
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In one control law, the active member is used solely as a sensor in a non-colocated
feedback loop. This achieves the desired vibration suppression, but is difficult to design
and does not maintain stability in the presence of model error. Another approach is to use
the active member in a colocated feedback loop, taking advantage of the piezoelectrics
ability to actuate. This leads to a rather simple design that has negligible spillover into the
higher modes. Itis also more robust with respect to model uncertainty. Its only drawback
is a sensitivity to capacitor mismatch in the self-sensing circuit. This ‘'mistuning' does not
lead to instability, but only a decrease in damping of the torsional mode. The results of
these simulations are consistent with initial experiments on the slewing frame [Leo and

Inman (1992)].
Control Design for a Tracking Maneuver

The concept of using two independent control laws to achieve performance is now
extended to a more complicated slewing maneuver. Instead of a simple step input, the
command into the slewing actuator now consists of a series of three 5° ramp maneuvers
followed by a smooth return to the zero position (Figure 11). It is assumed that the hub
position is at an inidal angle of -5°. It is desired to keep the error between the hub position
and the command as small as possible throughout the maneuver, and always less than 0.5°
after the first ramp input.

The control law is a combination of PID compensation using the dc motor as the
actuator and a PPF filter using active member 2 as a colocated sensor/ actuator. For
convenience and to show the flexibility of the control law design, the parameters for the
PPF filter are chosen to be the same as found in the previous section. Integral
compensation is added to the motor controller to limit the tracking error. After iterating on
the gain values, the following control is used in the simulation:




e,(1) = 20[6,, - 6(:)] - 756(:) - 10[ 6¢s)

65(29)° (39)

Val)= a00ezop 2 @op

The position gain is higher than for the step input case to speed up the system response.
Adding the integral control action improves the tracking ability of the system, and the
derivative component reduces overshoot. Increasing X, too much, though, can slow the
system down and degrade performance. The PPF filter parameters have not been changed
from the step input design. The ability of the hub position to track the reference input is
shown in Figure 11. Except for the initial slew, the hub error is kept to less than 0.5°
throughout the maneuver (Figure 12a). Because of the initial condition on the hub position,
the structure is excited at the outset of the slew. Without the colocated control loop,
structural vibradons occur and do not decay untl after 50 seconds. As expected, the
torsional vibradons are suppressed by the PPF control loop and the active member output
is much smoother (Figure 12c). Combining the PID compensator with a colocated control
law has produces satisfactory tracking and reduces the structural vibrations considerably.

8. Conclusions and Future Work

Integrating active members into complicated slewing structures is an effective means of
suppressing vibrations during and after maneuvers. This is the result of a modeling and
simulation study of a slewing frame. The distinctive feature of the slewing frame is that
there exists torsional modes that cannot be controlled using feedback loops consisting of
the slewing actuator and angular rate and position sensors. Vibration suppression can be
achieved by using active members as sensors in non-colocated feedback loops, but this
yields a difficult design that is sensitive to model error. A superior approach is to use the
active members in colocated feedback loops with robust control laws such as Positive

Position Feedback. When used in conjunction with a simple Proportional-Derivatdve




l

compensator, this design produces satisfactory slewing maneuvers and simultaneously
suppresses the structural vibrations.

Future work on this topic includes experimentally implementing active control schemes
and studying the effects of actuator and sensor dynamics. The problem of controlling the
slewing frame is well suited to the study of MIMO control systems. How the closed loop
performance is affected by the dynamics of the motor and self-sensing actuators is

currently being investigated.




Appendix

The equations of motion for the slewing element shown in Figure 1 are given by equation
(2). They are expressed in element coordinates and form the basis for the model assembly
described in Section 2. The element mass and stiffness matrices are

140 0 0 O 0 o0 70 0 0 0 o0 0
156 0 0 0 22, 0 54 O 0 0 -I3L
15 0 =-2L, 0 O O S4 0 13L, O
1401 701
—Z_L 0 0 0 0 0 —%L 0 0
a2 0 0 0 -13L, 0 =32 0
a2 0 13, O 0 0 =3B
v = PAL 40 0 O 0 0 0
420 16 0 0 0 -21
sym 156 0 227, 0
1400, .
A,
a0
4}
TR T TR T Ty TTTTRT T AT F- e - TATTTEEmATEE T
5 n i e 6, 6, % ¥ g $, 6, 6,

The last line of the above matrix indicates the element coordinate the node refers to. Any
lumped masses at the nodes are added to the diagonal elements of the mass matrix. A
mass at node i is added to the (1,1), (2,2), and (3,3) elements, a mass at node j is added to
the (7,7), (8,8) and (9,9) elements.

o &
K K,

where
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The rigid body inertia about the slewing axis is:
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The interaction vector for the slewing element is:

The following notation is used for the appendix:

s

a’w."ﬁ
<

GJ

m;, m;

[~ o 9
3(3L cosy +10r,)
0
0
0
L(2L cosy +5r,)
0
3(7L,cosy+10r,)
0
0
0

| ~L(3L.cosy+57,)]

density of the element
cross-sectional area of the element
element length
polar moment of inertia of the cross-section

moments of inertda

torsional stiffness of the cross-section
lumped masses at nodes i and j, respectively

distance from z axis to node i
angle between x and X axes.
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Figure Captions

Figure 1: (a) A flexible element slewing about an axis. The dotted line represents the rigid
body and the solid line is the elastic deformation. (b) A single element slewing about an
axis. The total rotation at the root is a combination of rigid body and elastic motion.

Figure 2: Model of a dc motor connected through gears to a slewing structure.
Figure 3: (a) Piezoceramic pair bonded to a flat beam. (b) Piezoceramic active member.
Figure 4: Self-sensing actuator as presented by Dosch, Inman, and Garcia (1992).

Figure 5: Block diagram of the self-sensing actuator with the inclusion of the circuit

dynamics.

Figure 6: Slewing frame testbed showing the location of the active members, angular rate

and position sensors, and the dc motor.

Figure 7: Open loop magnitude plots of the slewing frame from O to 20 Hz. The
experimental response (dotted) exhibits damping in the 7.1 Hz mode due to dry friction in
the motor. (a) Tachometer/ Motor input. (b) Sensor output of active member 2/ Motor

input.

Figure 8: Simulated step responses for the slewing frame with PD control (dotted) and
PD with supplementary GSF feedback (solid). (a) Hub position. (b) Motor control
voltage. (c) Output of active member 1. (d) Output of member 2 showing instability due

to model error.

Figure 9: Root locus plots for the GSF design (a) and the PPF design (b). The PPF
controller does not exhibit the spillover into the higher modes that occurs in the GSF

compensation.
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Figure 10: Simulated time responses for PD control with supplementary PPF feedback.
(a) Hub position. (b) Motor control voltage. (c) Sensor output of active member 1. (d)
Active member 2 control voltage. The capacitor mismatch in the self-sensing circuit
causes a loss of damping in the torsional mode (dotted line in (c) and (d)).

Figure 11: Input command (dotted) and hub position (solid) for the tracking maneuver.

Figure 12: Simulated tme responses for a tracking maneuver without supplementary
feedback (solid) and with supplementary feedback (dotted). (a) Hub position error. (b)
Motor control voltage. (c) Sensor output of active member 1. (d) Active member 2

control effort.
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Abstract

This paper discusses modal analysis of stuctures with
repeated eigenvalues and eigeavectors. Equatioas are
derived for systems with and without driving powunt
inforrmacion. In the case whess driving point residues are
availabie. an e:genvalue of muizgiicity ¢ can oniv be
ideanried using g inputs. The derivadon is ver:fied on a
simple moce! of 2 smart anteana. An ideanficanon of the
model is also performed using the Eigensystem Reaiization
Algorithm (ERA). Modal parameters are identified
accurazely using ERA but the resuiting model contains e=rors
in the pnase of the input/ output Tansfer funcuons. Modai
tests and e Modal Assurance Criremia are used to distngusn
berwesn repeated and distnct modes of 3 stmart antenna. The
need for an accurate model is discussed in relagon 0 the
problem of actve vibraton suppression.

Nomenciature

TaSS MaATIX

viscous damping marrix

sariness mamx

input vector

dispiacement vector

derivanve of y with respect 0 time
sYImmeic state space maticss, in eq (3)
input vector, in egq.(3)

Tansformation mamix in eq. (4)

diagonal marrix of eigeavaiues

rh eigenvector

mamix of mode shapes (coiumns)

rh mode shape

rd mode shape's i modal participadon factor
experirnenal residue, i® ourput. 2 input, #b mode
modal state space state marrix

modal state space input magix

modal state space observation marix

modal state space direct ransmission matrix
Laplace variable = jo

transformation marix

2eT0 mamix

0T  manspose

0*  complex conjugate

L INTRODUCTION

An accurate model of an actdve szructure is fundamental ©
the understanding of the problem of control structure
interaction. An active, or smart sucture, contins a number
of integrated sensors and actuators that allow the structure o
perform precision pointing, sighting, placement, or vibration
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sucpression o a degree of accuracy or performmancs which is
not casily achieved with a passive squcaure. I3 the impal
siages of design a Finite Element Model (FEM? is adeguate.
Tae FEM allows the engineer to address sucs issues as
ociumal actuator and sensor placement, size iné Jower
reguirements of the actuartors. and open anc ciosea loop
certormance comparisons. Tvpically the FEM wiil
x“.melv oredict the natural Tequencies of the s=ucture and
ovel g--zc—nl ‘dea of the structure’'s mode shaces rac least at
Tow trequencies). The FEM il less accurately srecic: mnput
/ ourput Fanster funcuon parameters such as the z=ros and the
ohase versus freguency response. In addition stancard FEM
xenods make no predicons of the damping in e svsiem.

To design a stable high authonty conwoiler the =oce! must
accurateiv reflect the dynamics of swucture. The F=M can be
iz=groved by incorporatng expenmental test 2ata ' modei
updating) or an identified model can be demved bYased
entrely on expenimental tests. The laner approaca s :aken in
tis paper using 'wo methods. The first method :s 1 odel is
based on modal analysis techniques and the second is
idendfied using the Eigensystem Realizadon Algorithm
(ERA) (1.

2. MODEL IDENTIFICATION USING MODAL
ANALYSIS

The purpose of modal analysis is to obtain the swucture’s
modal parameters: the eigenvalues (damping and aatural
frequency) and the eigenvectors (mode shapes). The modal
narameters can be used to constuct a modal model A model
based on modal analysis has two advantages over other
model idendficadon techniques. The modal mode! rewains a
simple physical correspondence berween the identiied model
and the structure which is lost in many state space based
identification methods. Another advanuage is that an inidal
assumpdon of the of the structure's dynamics allows the
modal parameters to be idendfied from a reladveiy small
number experimental transfer fuacion measurements. In
modal analysis it is assumed that the structure’s dynamics are
represented by:

My+Cy+Ky=u M

where M, C and X are symmetric and positve semidefinite
marrices, y is vector of displacements and u is a vector of
ipputs. [t is also assumed that the structure is dme invariant,
the modes are distinct, and a driving point transfer functon
(collocated sensor and actuator) is available. There are
methods available to be used on structures which do not
conform to these assumptons: Ewins (2] discusses the
problem of using modal identification on non-linear systems
and [aman (3] discusses modal idendficadon for asymmeric
M. C and X matrices. In this paper the issues of model




identification when there are repeated eigenvalues and when
the 2 driving point wansfer funcdon is not available are

[n modal analysis of a passive szucture, sauctural inpurs are
obtained from a hammer or a shaker, and sguctural outputs
are obuined by amaching accslerometers or strain gauges.
An actdve structure has actuators and seasors as an inregral
part of the strucrure. Here the excitagon points needed for
modal analysis are the actuators of the active squcture and
the suctural outputs are the built in sensors. In an active
structure such as the smart anteana which uses piezoelscTic
materials for both the sensors and :he actuators (this sTucture
is discussed later in the paper;, any given piezoelecTic sensor
and actuator element can be used as an acrator or as 2 seasor
during modat analysis.

It is well known that when the sigenvalues are disdinc: and
the sgucture is of the form g:ven oy aquanon (1) ea the
modal parameters can be identfied from a singie column of
the receptance mamx. This is equivalent to saying thac the
modal paramezers can be obtained from expenmenti Tansfer
funcdons between a single intut and m sensor outouts. Whea
the eigenvalues are not distinc: or when a coilocated Tansfer
funcaon is not available then in order to ideanfy the
sgucture, multiple inputs are required. Each of these cases is
discussed in thte following sec=ons.

Modeling When Eigenvalues Are Distinet
Equation (1) can be put into 2 sycamemic swte space Sormat:

Gq-Hq=f (3

where:
cM _r-x'0 la

o] o[ e [FRl el @
There exists a transformation mamix ¥ on_hogonz.l with
respect o G which will diagonalize the system in (2}

YGYal, WHY =[3 2]

4
A =diag(X,), A’ =diag(},) C))

The wansformation mamix ¥ is parttoned in the foilowing
manner:

-2
¥ =[ S A!ro.‘\.] ®

Where the columns of @ are the mode shape vectors of the
system given in (1) and the rows of © are the modal
pardcipation vectors.
Substituting the ransformation q='¥x into equation (2)
results in the diagonal equation:

R r

xa[om-]x-c-‘l’ 4 ©)
Equatdon (6) can be cast in the familiar state space

ion:
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X =Ax + Bu
y=Cx+Du o
where:
. A'n [P
A =[‘8‘“'3'J 8 =[§.7 ! ¢, =[o:0°] ®

and D is the direct Tansmission mamrix. The objeszive of the
modal modeling is w idendfy the A, 8, C, and D wmamixes in
equacion (8). The columns of C, (also the rows of 8) are the
mode shapes and 1ire designated ¢, whess 7 can zake vaiyes
from 1 to 24 (n is the number of DOF retained in the model).
The columns of 8 (and the rows of C,) are the modal
pardcipanon vectors and are designated b; where ( can ke
values from | to m (m is the number of rmeasurement
locanons. Note that in the idennfied mode! e auzber or
coiurmns of 8 is not necessarily equal w0 2 bur wiil instead
depead on the number of experimenral measuremen:
locagons. The i element of the Ab row of @ is designated
®r and is called the modai parucipadon factor. Taking -he
Laplace Transform of (7) and subsatuting (8) resuits n in
input/output relationship involving the recepmncs mamx @

Y(5)=C,(sf - A)™ BU(s5) = DU(s) t9)
Y(s) = as)U(s) (10
(sl - A)-‘ ‘ 0 -
= : T || emwmme- - o - - -Q‘ ' 1
s =[010 I[ 0 Ta] o D (aun

It follows from equadon (10) that the wansier funcuon
between the z‘ﬂ‘output and the /¥ inputis:

+d., a2

v

Y(s) .00, &0,
= - -

U,(5) wis+d, T s+a,
The numerators of (12) may have both real and imaginary
parts and in the normal mode assumption (proportional
damping) the numerators will be pureiy imaginary. The
experimental Tansfer functon between the /& ourput and ;&
input is measured to be:

L A & LA,

Y.() =YY (13
U s+,

TSk,

The modal partcipation factors ¢; are identified by equating
the residues of the experimental wansfer function (which are
the aumerators of equaton (13)) w0 the residues of the
assumed mode!'s mansfer function (which are the numerators
of equarion (12)). Only a single column of the receprancs
matrix a(s) needs to be measured to provide sufficieat
equadons o determine all m-a modal participation factors
¢ir- This is equivalent o saying that oniy a single input is
needed in obuining the required transfer functions. Equating
the aumerators of equaton (12) with the gumerators of
equation (13) and using the input /=8 results in:

¢.0,5,4, i=ltom r=lwn (14)




which describes m-n equanons and m-1 unknowns. Thereisa
closed fonn solution w0 the equatons described by (14). The
equation involving the driving point jminf is solved and ¢,
is found. The modal partcipaton factor ¢, is then the
“seed™ for solving the remaining equations.

A single inpur jufl is the minimmum requirement w ideatify the
szucture only if the structure is congollable from the input
Jj=B. The structare is controilable from the input j=f if all of
the modal participation terms in the modal participaton
vec:or bg are not zero (4], If the structare is not conrollable
from j={3 then more than a single input will be required to
identify the stucture.

The elements of the modal state space model's (equadons (7)
and (8)) 8 and C mawmices are determined by equadon (14).
The A mamix is simply a diagonal marmix of the identified
eigenvalues, The siements of the D mamix d;; are de=rmined
by setwing the residual ter= in equauon (13) equal to the
residuai rerm in equagon (123: 2; = k;;. For many soructures
only the diagonal erms di; will be non-zeso. Each diagonal
terma relaes o a collocated xanaster function which may have
an equal number of pales and zeTos in the measurement.

Driving Point Not Available
When the driving point is not available equation (14) will
reduce to (m-/)-a equations and m-n unknowns:

9,0,=,A, i=lwom i=3 rlona (15)

A manster functon from an addiconal input j=v and a single
ourput { wiil yield an additionai n equatons:

0,0,=4, =B i=sv r=lon (16)

Equaton (15) twogether with equation (16) yield m-n equatons
and m-n unknowns.

Eigenvalues Repeated When the Eigenvectors Linearfy
Independent

Here we show that when the eigenvalues are repeated with a
muldplicity of 2 then a minirnum of 2 inputs are required to
identify the modal participation te=ms §;r,

It is important w keep in mind thar when the eigenvalues are
disdnct the rows of the 3 mamix (the mode shapes) are
uniquely determined from experimental data. When the
cigenvalues are repeated, there are an infinite sumber of
mode shape solutions associated with the repeated
eigenvalue, and each of these solutions is related to another
solution by an orthogonal similarity wansformation. Thus for
the system given by equadons (7) and (8) there exists an
orthogonal similarity wansformasion T such thar:

x=T'q T'aTaA Ba=T'B an

Note that the 4 matrix (the mawix of eigenvalues) is
unaffected by the transformation while certain rows of the 8
magix are ransformed and other rows are unaffected. Those
rows of 8 which are associated with distinct eigenvalues are
unaffected by the transformartion 7" and those rows associated
with repeared eigenvalues may be ransformed. This result is
best shown by a simple example. Given is the following
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system with distinc: eigeavalues g and ¢

cigenvalue b 1ad repested
X=Ax+8u
a d d.d 4,
o R B P @
¢ 8088,

An b:rthogona.l similarity transformation is arSizanily chagen
1o be:

9 cos®

Seat -8 0]

cos@ -sin

7210 ¢n8 cos® 01 (19
00 0 1

Applying the Tansformation x=T7q o eguanon (18) i is
found that 7T =/, T AT = A and:

B=T'8

[ 4 “ “

c.‘nt-llncczﬂd-lz‘-iﬁal-,j,,‘On‘-iol‘-u

-xe-ioll‘-0':n!-/znlqcbo[,l-O-‘-O-/‘-O “9)

5 L] 8 L )

Note that the first and fourth rows of 8 are e same s the
first and fourth rows of 8. These are the row associated with
the distnct modes. Note aiso that any single ¢!=ment of the
repeated mode shapes can be arbitrarily se: :0 zero by
judicious choice of the ransformation T. For :nstancs the
elezent in the second row first column of 5 will be equal 1o
zero if O is chosen such that O =tan(e, /f,). We will use
this property to obuain an exua equation in soiving for he
modal participation factors.

Here we examine the transfer function from a soucure with
repeated modes, Assume the first p modes are repeared with
a muldplicity of 2 and the temsining modes are distinct. The
transfer function between input j and outpu | is then:

Y.(s) ’i l‘-‘rl‘_v‘labz.p +i 1":1-.,.—‘:?: lo.v
v = s+, - s+X
-l b & =2 . Y
. 9.9. . Z 0,,0,:
""‘:*z" ""‘S*lr

The subscript preceding ¢;, (either a 1 or 2 2) is used 0
differentiate between modes associated with a repeared
eigenvalue r. Equating the numerator tezms in equation (20)
with the numerator terms in the experimental transfer
function equation (13) and using the input j=J results in:

’

+d, 0

19,10, +10,,0,=,A4, i=slom relwp (73]
which yields 2mp unknowns and m-p equaticns. An
addidonal p/m-1) equadons can be obrined by using 2
second input j=y:

10,,0,+.9,.0 24, imsloom, i»f rmlwp 22)




which wgether with equation (21) vield 2m-p-p equadons.
Another p equations are obtauned by arhirarily setting:
;‘.’x‘-'\‘- =@ s 23
Equadons (21), (22) and (23) yield the 2m-p equations
necessary to solve for die elements I;r using experimental
cansfer funcdons. Note that in order to obtin a determined
set of equagons it is aecessary to use 2 inpuss. The procedure
described by equanons (21), (22) and (23) can be extended
show that when an eigenvalue is repeated with 2 mulaplicity
of q. then 3 munimum of ¢ input locations are necessary o
obuain 1 determined set of equacons provided that the system
is conmollable from the chosen ¢ inpuss. If the system is not
controilable from the chosen ¢ inputs then addidonal input
locadions or locadon wall be nesded w0 idenafy the soucturs.

Solving equations (21), (22) and (23) will aiso reveai whether
a mode is repeated or disunct. If it found from the soluton of
{21),(22) and (23) that the AP mode shape is a vector of zeros.
te. 10, = 0, then this mode is disdnc: and the assumpron of
a repeated mode is incorrect.

Drniving Point Not Available

When the driving point is not avaiiabie, thea the input j=3
will provide (m-/ )p equatons:

10,,0,+:0, 10, =,4,

i=3

An additional (m-2)p equations are obuined from a second
input locaton j=7:

.=xlwom r=liop (22

0,,0,+:0,,0 = A i=lom, i=f i=y r=1wpC5)
The remaining necessary equadons can be obtained by
measuring three wansfer functions from a third input /=&

0..0,+:0,,0 = A =l i=d

vy

i=y i»d r=lwp <6
Equations (24), (25) and (26) togezher with equation (23)
describe 2m-p equadons and 2m-p unknowns.

3. ISSUES IN IDENTTIFICATION AND CONTROL
The Benchmark System

The benchmark system is used for comparison of
identificadon schemes on 2 known refereace (Figure 1).
Each of the eight rigid spokes is connected by a pin joint and
a torsional spring to the rigid hub. Each of the spokes is
connected at the end opposite to the pin to its neighboring
spoke by a linear spring (a small angle assumpdon is mace
for rotation about the pin). The torsional springs represent
the stiffness of the anteana rib and the linear springs
represent the coupling between the ribs. When the coupling
is small, the ribs act independently, when the coupling is high
repeated or nearly repeated modes are found. Each of the
torsional springs is given a slightly different value to
represent the manufacturing tolerance of the rib stiffness.
Simulated ansfer functions are measured between the inputs
at spokes 1 and 2 and the outpurs at spokes 1,2 and 3. From
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any one SISO a maumum of 5 modes are idenaed 2 of
which are disgncz and 3 of which are repeated.

Modal Model

A venficagon of the modai anaivsis technique is pesormmed
using the benchmark syste= as a reference. Using the
residuais ‘rom the simulated Tansfer funcuons. the wodal
parzc:paton vec:ors are corresty idennfied using scuacons
(21)-(23). In soiving the squanons no assumpoons ire made
about whnich modes are disunct and which modes ars
repeated. [n the soludon. the 2 Jodes shapes assoc:2:22 with
a repeated mode ‘orm 1 lineacly independent par. Tae 2
solved mode shapes assoc:ated with 3 disunc: =oce are 1
non-zeto modeshape, which is the correc: modesnase. anc 2
modeshace consisang of 3 vec:or of zeros, waick S de
discarced wn the modei.

ERA Moge!

After venfying the =odal analysis method on the denchmarx
system, the Eigensvstem Realizaton Algorithm 'ERA s
used :0 obtain a 2 input 3 output state-space OCSi. 1.
objecuve is to determine whaether ERA can accurateiy
idenufyv the modal parameters of a system which exaudits
closely spacsd and neariy repeated eigenvaiues. Tae
advantage of ERA over the modal anaiysis metod s thar it
uses e dme dar direcdly to form the modei. It is not
necsssary 1o persorm any type of identificaton to cotaia e
SISO mansier functons.

Whesher idenufying the beacamark system or e actual
sgucture. the method of acquiring the ERA mocs:i is as

follows. The system is excited by a random signai input intc
the first actuator and the desired sensor measure=teats are
obuined. This process condnues for all of the aecessary
acruator/ sensor relationships. After all of the :eswss are
compiete. an FFT algorithm uses the ume dara 0 calculate
the impuise response of the system. The results are tnput
into an ERA program whica forms the state-space Todei of
the system. The algorithms used for this procedure are
avaiiable in the SOCI Tooibox {5].

In tesros of the namral frequencies and damping racos. ERA
is able t0 accurately idendfy all but one of the pararmeters.
From the singuiar values of the Hankel mamix, the order of
the state-space model is chosen to be 16, as it should be.
Except for the fact that ERA did nox idenrify the 3.3397 Hz
mode, the identified narural frequency and damping ratos
show good agreement with the acrual values [Table 1]. Of
course, it must be remembered that the dme data for this
analysis is noise-free, a characteristic that won't be preseatin
an experiment.

Table 1. Ac:ual and ERA idensified natural frequencies and
damping ranos for the benchmark system.
Actual '

Idencified

oHz) §(%) oHz) (%)
1.5804 1.0070 1.5800 1.2006
19935 07984 19443 05381
19973 07968 19965 0.8072
27501  0.5787 20085 0.8102
27504 05787 27391 05312
33375 04769  2.7400 05522
33397 04766 3.3366 0.5700
35539 0.4478  3.5544 0.3630




q

Although ERA idendfied rost of the narural frequencies and
damping rados correctly, the cesulung wansfer functions
contain error in both the magninde and the phase. Figure 2
compares the acrual SISO mansfer funczon berwesn sensor |
and actuator | and the one obtained Tom the identfied
mode!. The magnirude marches over most of the frequency
range, but a large error exists in the phase. If the identfied
model is the basis for a concol system design. this error in
the phase is a2 major concema. A vibration suporession
scheme based on the identified model would be
fundamentally different than one designed from the actual
Tansfer funcions.

The Smart Antenna

The structure under examiraton is an eight ribbed smart
antenna, as shown in Figure 3. At the ciamped =nd of § of
the sibs. a singie prece of piezoceramuc is bonded 0 =ach side
of the beam. Each piezocsrarmic has dimensions 0.0152 x 6.4
x 2.3 ¢ and is separated into two eiecically isoiated swmips.
the larger area is used for actuadon, the smaller area is for
sensing [Piezo Produc: marezial G1195). Conooi laws are
impiemmented using an Opza 3 digui congoiler and daw
acguisidon is performed om a1 Texgonix 2630 Fourier
Anaiyzer. The seasor for ke =odai wests is an opteal probe
from Philtec.

To ideadfy which namral Srequencies of the anisnna are
regeated. two separate modai ests are performed.  For the
first modal analysis, the piezocsramuc on rib 1 ts used as an
excitation source, and the disgiacement ar the dp of each b
is measured with the optical -robe. The naural Sequencies,
damping rados, and residues are thea calculated using the

STAR Modal Analysis package (Table 2]. A secord modal
test is performed in the same =anner. sxcept that the actuator
located on rib 2 provides the =xcitaton.

Table 2. Nawral frequencies (in Hz) of the five modal
peaks. as calculated from the :wo inpuss.

Mode Input 1 Input 2
1 9.56 9.71
2 10.41 10.44
3 11.51 11.63
4 1258 12.58
5 1723 17.28

The results of the individual tests are used to determine
which of the antenna’s eigeavalues are repeated and which
are distnct. From any one SISO mansfer funcdon. only five
modal peaks are well defined. Thus, each test yields modal
parameters for five modes. Since there are eight ribs in the
antenna, there are eight eigenvalues with associated
eigenvectors in the first modai cluster. Since only five modal
peaks are visibie on any one SISO mansfer funcdon, two of
the modes are distinct and three are repeated. To find the
repeated modes, the eigenvecrors that correspond t the same
modal peaks from the two separate mansfer funcdons are
compared in terms of the Modal Assurance Criterion (MAC)
[2]. If the MAC is very close 0 zero, this indicares that the
eigenvectors are linearly independent and the corresponding
cigenvalue is repeated. If the MAC is close to one, then the
two eigenvectors differ only by a scalar, and the eigeavalue
could be distinct. This second test is not definitive since an
eigenvalue could have 2 MAC value of one and sdll be
repeated.
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The resuits of the MAC tests for the Tw0 segarue dam sers
are listed in Table 3. For the first rwo modes, the
eigeavectors that are excited ffom input ! are definnely
orthogonal o those that result from an 2xcitaton at inpyg 3
Conversely. the fifth mode s the same irvegardless of the
locanon of the input. therefore the corresponding eigeavalye
is disgnct. For the reznaining rtwo modes. he results are o
s clear. By examining the mode shapes Siar ~=suit Som the
fWO separite excitations, it is deterrmned :hat mode 4 g
distinct and the third mode is repeated. This conclusion is
supported by ihe results of the Modal Assurance test

Table 3. The MAC comparison for the two :evarate modal
cests. The nigher the value. the larzer :ne correignon
berween the modes from :he rwo inpuzs.

Input 2

Inpus |

[V Ty W)
[=]
2

294

The difference between repeated and distinc: =odes san be
iilustrated by examining the mode shapes 2at ~=suit om the
two separate inputs. Figure 4a is the if:h mode shape
resuiting from an input at rib 1, and Figure b is e sare
mode excited by an input at nb 2. To :he degres of
exgenmental accuracy, e shape of the =ocs s indegendent
of the location of the input, whic: Teans that the
corresponding eigenvalue is disdncz This is consistent #ith
the MAC value being 0.94 for these rwo =oces [Table 3].
The next part of Figure <+ conuins the mocss =at resuit Som

an excitadon at the second aarural frequencv. From Figures
4c and 4d, it's clear that the mode shapes c2ange desending
on the locadon of the input. This iedicates that the
corresponding eigenvalue is repeated, waich again is
consistent with the MAC resuit

The procedures for identdifying the smart ap:enn3 with modal
analysis or ERA are similar but there is one imporant
difference. Both are based on random input/ random ourput
time domain responses between all of the zecessary acmator
and sensor locatons. For the modal analysis approach, the
number of measurements is affected by the availability of
driving point residues. Once the individual input/ ourput
responses are obtained, the transfer funcIons are ideadfied
using a Recursive Least Squares program. The mansfer
funcdons are expanded into the pole-zeTo form of equagon
(13) and the identification of the anteana :s compieted by the
approach derived in secton l. If ERA is used. no SISO
idendficarion is necessary. Once the time daa bezween all of
the inputs and outputs is acquired, the impulse responses are
obtained by use of an inverse FFT. The ERA algorithm can
then be used (o find the stare-space model. Although at frst
it seems cumbersome to identfy SISO transfer functions in
order 0 do the modal analysis, this might nurn out © be an
advantage because the individual gansfer functons are
forced to be accurate before the identificarion is performed.

Although a full experimental ideatification and conwol of the
smart antenna has not been performed, preliminary resuits
illuszrate the importance of obtaining an accurate MIMO
model. Previous studies show that simpie SISO models can
be used in conjuncdon with collocated control laws o obuin
an increase in structural damping (6]. Unfortunately, te
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increase in damping achieved is limited due to the existence
of closely spaced and repeated modes. [n the future, it is
desired t0 use both collocated and non-coilocated conwol
laws © obtain a larger increase in the closed loop damping.
For these types of conrol schemes. it is very important t©
have an accurae model. As discussed in secuon 21, it might
e difficult to achieve the necessary acsuricy using a ome
domain technique such as ERA. The next step in our
wodeling study is w apply the modal analysis approach
developed in secton 1 to an experimental idearificanon of
the szoart antenna.

4. CONCLUSIONS

A modal analysis technique that ideadiies MIMO mode!s of
stuctures that contan repeated or nearly repeated
eigenvalues was presented. The metnod is an extension of
the well established procedure that applies if the eigenvaiues
of the system are disunct. For a3 sysiem conumuning repeated
eigenvaiues with multplicity g. it is necassary 0 have g
inputs for the modal tests. Equanons were denived Jor he
systeans where the dniving point r=sidues are avadabie as well
as for systezns with no dnving point tarormanon.

Comparisons were made betwesn the modal analysis
approach and e Eigensystem Reaiizanon Algornhm. The
modal analysis :echnique is dased on the availablity of SISQ
manster functions of the necessary input/ output refanonships.
Accurate SISO models are easly optained with time domain
idendficaton techniques such as Recursive Least Squares.
These transfer functions are expanded and the resuiting
residues form the basis for the modal analysis. In conmast.
ERA uses the dme domain daca direc:ly and recurns the
modal paramerers as well as 3 state-space model. A smdy
conducted on a simple mode! indicated that ERA identified
the natural frequencies and damping ragtos well, but had
difficulty matching both the magritude and phase of the
actuator/ sensor wansfer funcdons.

Preliminary experimentai results on ideatificaton and control
of 2 smart antenna were also presented. Two modai tests
were pervormed and the repeated modes of the sucture were
identified using the Modal Assurance Critesion. The
importance of understanding the narure of the repeated modes
was discussed in relatdon to designing active vibradon
schemes for the smart anteana.
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Figure 1. Benchmark sysiem for comparing idensiyicssion
methods. The eight degree of freedom lumped parzme:zer
system displays much of the dyrarric response charac:e=sacs
found in the flexible antenna.
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Figure 2. Comparison besween an actual (doned) and ERA
(soiid) idensified :rangyer ‘uncion jor the Senchmark system.
The model agrees weil in :erms of the magnitude, but the
phase concains significanz error.

100 cm d.4cm

Figure 3. The smart antenna rest sructure. Locanion and
design of the piezoceramics are shown.
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l_":gun 4. A comparison of the mode shapes of :he antenna
Jrom two separate inpuzs. The fifth mode is Gissinc:. since :he
shape is independens of the input location (@ 2nd b). For zhe
second mode, the shape is dependent on the 'ocation of the
inpus (¢ and a), therefore it is a repeated moce.
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ABSTRACT

- Two acive vibration controi scaemes, Posiuve 2asition

Feedback (PPF) and Acive Vibranon Absorber (AV A), are
expenmentally impilemented with an eight nbeed smart
awtenna. Mounted on {ive of the 21ght nbs are cailocated
pIEZOCSrAMIC SENSOr/ 3clUAOr paus creaung 3 muik-input
muit-ourput control strucawre. A SiSO pole zero moce: of one
of the antenna ribs is idenafied. The design parameters ‘cr the
AVA and PPF congollers are numercaily opumized {rom
amulations of the SISO model. The design parameters found
in the SISO simuladons are then implemented in the MIMO
stucture. Theoredcal stabiiity bounds for collocated and non-
collocated control for both the PPF and AVA congvel schemes
are also presented.

1. INTRODUCTION

Vibration suppression of 1 flexible antenna is compiicated by
existence of closely spaced modes and repeated natural
frequencies. A further difficulty is that the configuration of
such structures makes the use of standard actuators such as
proof masses and torque wheels infeasible. These problems
can be overcome by applying smart stucture technology
combined with control laws that exploit the benefits of sensor/
acator collocation. Distibuted seasors and actuators such as
piezoceramic material are well suited to this problem. (1].
They can be readily integrated into the smucture without
significantly increasing the weight or compromising sauctural
integrity. Another important featurs of the smart structure
approach is that the seasor and acruator can be virtually
collocated with one another. In this simation, concol laws
such as Positive Positdon Feedback (PPF) (2] and Active
Vibration Absorbers (AVA) [3] can be implemented in a
staightforward manner. Design of these congolilers can be
accomplished with only crude models of input/ output
relationships. They are also inherently robust with respect 0
uncerwin or unmodelled dynamics. These armibutes are very
important for this problem, since obining an accurate model
of a flexible antenna is difficuit.

The intent of this paper is to compare vibration suppression
schemes on a flexible antenna that contains piezoceramic
amators and sensors. The contol laws studied are PPF and
AVA, Important consideration is givea (o the fact that the
experimental testbed exhibits the problem of closely spaced
ind repeated namural frequencies. The paper is organized in the
lollowing manner. First, the framework foc the PPF and AVA
Controllers is outlined and the two techniques are compared.
Theoretical stability conditions are also derived in terms of the
design variables and structural parameters. Next, a description
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of the flexible antenna testbed is provided with a discussion of
the algonthm used to design the controllers. Results of
expenmentl implementanon is then presented for the different
conaol schemes. The fnal section summarizes the important
conclusions and provides direcdon for Suzure researca.

2. SECOND ORDER CONTROLLERS

[n this secdon a general mathematcal famework is introduced
from which the sability of PP¥ and AVA are compared. The
dynamics of a flexible soucture coupied o a second order
controller can be expressed as,

sructure:
1G+A,q+A,q=58u ()
Y. =HSq. y =HSq., v =453 2
controller
Ia- - Aﬂcqa * ‘\ l‘qc = ‘c (3)
y.=Ha,. y.=Hq, . 1. =2H24, @)
where:

S(nxn) matrix of eigenvectors

A, (nx n) proportional damping matrix diag(25;wp)

A, (7 x r) controller damping matrix diag(2{ciwci)

A (rxn) smucture stiffness mamix diag(w;2)

A (rxr) conmoller stiffness marix diag(wei2)

q(nx1) structure modal coordinate

q,(r x1) controller coordinate

H_(mxr), H (mxr), H, (mxr) conwoller cutput matrix
H (s, xn), H (s, %xn), H,(s, x ) sTucture output mamix
B(ax m) structure input Matrix

y.(s,x1),3.(s,x1),y,(s, x1) sysem output

y (rx1), y (rx1), y (rx1) controiler ourput

u, (r x 1)controller input vector

u(mx 1) system input vector

n=sucture degrees of freedom, msaumber of actuators,
ranumber of congol filters, 5, 3, 5¢ = number of acceleration,
velocity and displacement seasars

The martrices A, and A are positive definite and A, and
A, are chosen (o be positive semidefinite. The input marrix 8
is defined by the location of the actators on the strucmure and
the measurement matrices M, H, and Hyare defined by the
location of the acceleration, velocity and displacement sensors.
In general, the location of the actustors will not be the same as
the location of the sensors (nonm collocated comtrol). The
flexible system and controller are coupled by,




e
.

u=(y,-Gy)+(@.~Gy ) +(3.-Gy.) &)
'."J‘*'BJ.*aJ. (6)

where 8, 8, B..mthecomﬂcrinpmmmmicaand
G Gy, G¢are direct mansmission matrices directly coupling
the structure's sensors o the acuators. Combining equations
(1)«(6) results in the sguczwre plus controller closed loop
system, '

M4,-Dq,-Kq,=0 o
where :
, T1-ST3GHS -ST3H_
Q’{q Q.j'MsL -8, HS / ;
[A,~5'8GHS -5'3H ]
b [ -8 HS Ay |
+S'BG,HS -5'3H, l
K,’[ _B HS ‘ ‘\n ! 8)

The closed loop system. eguation (7). is stable when the
matrices M, D, and X, are symumetric and posiave semidefinite.
By imposing the gain and symmetry consants:

G, =H_IB_,G=sHN,3,,G=H\.B, (9)
amd  (SBH,) =B,HS i=a.v.ord (10)

the matrices M, D, and &, must be symmemic positive
semidefinite and thus closed loop swabie (3]. Juang (3] calls
controllers of this form AV A and are characterized by infinite
gain margins when constraint equations (9) and (10) are
applied.

PPF is similar w0 AVA except that in PPF only positon
measurements are fed back and there is no direct transmission
term G, Combining equadons (1)~(6) and seting G4, G, G,
H, H, He. and H,, cach equal to 2 zero mamix resuits in the
closed loop PPF equation:

M3 +Dq,+Xq, =0 (1

where q.=[a" ], M=r,

A, O A, -S"BH,
D-[OA]ansz[ ] (12)

BHS A,

WidePFminethtycom’aimisplacedoumeconuouer
gain for stability. Here we will show that this constraint is a
function of the suuctural stiffness matrix. ' Imposing the
symmegy coastraint equation (10) on the displacement
measurements: - .. -

: ('sfaf(,)".;a;x;s- M a3

[ -

and subsdtuting equation (13) into the PPF closed loop
suffness mamnix. equagon (11). resuits in the symmeax mamx,

X ’[.\, -M

' r ’ (14
-M Ab‘! . )

A symmeic matrix W is positive semideiuee uf (5]

w,20 andW -www 20 (Fisa pseudonverse

Il’

—
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It follows from the above theorem and ‘rcm equadons (11%.
713), that the matnces in squadon (10) are posiuve
sermudefinite when

A -S"BH ALB HS20. (16)

Conrroller design for AVA and PPF involves choosing
conuoller parameters A, and A\, and input mamces 3,..
3. B8 and output gain mamices H,., H.n He for bes:
performance. In the AVA controller the direct gansmission
marrix is fixed by equation (9). To ensure siaouity of the AV A
and P°¥F controller, the symmeay conszaunt equations (10)
must be imposed. The PPF controller must in addition also
meet the inequality constraint (16) to ensure stability. It must
be emphasized that the given subility bounds do aot inciuce
the effects of unmodeliled seasor and actuator dynamics which
are always preseat. Also the symmegy constraint equation
(10) involves eigenvecior information vhich in a structure s
often not accurately measured, thus leading to additional loss
of control robusmess in this non-collocated case.

Collocated Control
Here it its shown that with collocated fesdback it is act
necessary to impose the symmexy consTaint equation (10).
Thus the collocated congoller will be more robust o 3 poor
model. It is shown here using displacement feedback as an
example that the ciosed [oop equations for both AVA and PPF
are symmemrizable (a ransformaton w0 dynamicaily similar
system exists) when collocated feedback is used. If the
actuator and displacement sensar are collocated then

(s8) =P, HS=0P an
where @ is a scalar. Combining equations (1)-(6) and (17) and
using only displacement measurements (H,. Ho He and H .,

are zero) results in the combined structure and commller
equations for collocated displacement feedback:

[{+rAq+Aq= P'H,q,-aP G, Pq (18
1§, +A,4q,+A_q, =aB Pq (19

In collocated feedback esch sensor is able to communicate |
onlywhmmoaandconocmdacmmrmulmgmm ;
gain magrices. meomuermmmmhameblock ;
dngomlfam.
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BES
h :
B -xm)= ! = b; (<0)
L el
b,"
“..mmnsmtbeﬁcolumnvec.orbs-b b, b, ...'3 are

the gains associated with the i acator. There will be m such

A column vectors (m is the number of acwuators). The aumoer of

terms in the vector bi will be equal to the number of control
filters associated with the i* acmator. Similarly the conaoller
- ourput gain maxix will be in block diagonal form:

"h, ’ Ch, &y . '° ' ]
“Hmxr)=| 3 = Tt 'an
l_ b, 1 Ry oo
where the i row vector hj is associated with the i acmuator.
With collocated feedback and input/ output mauscss in the
above mentioned biock diagonal form. thers is a
ransformazion mamix T that will symmetnize equations (7) and
-(8). This ransformagon is given by:

q.=Tv, @)
where,
b b b N
ravadiag Pty Pubs balba ] @
hohy Ry kg R, kg

Because the system has been shown to0 be symmetrizable, the
Symmetry constraints given in equation (10) do not need to be
imposed to ensure swability in the collocated case. For the
AVA controller, as long as direct ransmission equations (9)-
(10) are satisfied, the closed loop system will have infinite gain
margin. .

For collocated PPF control, an inequality constraint on the gain
is still required 0 ensure swbility. Subsdtuting the
ransformagion equation (22) and (23) int the closed loop PPF
equation (16) transforms the stiffness mawix (12) to the
symetncm '

-P’V] 2

. - . . - ’
where, ; '

e

- VaHT, V'eal™8,, (S'BH,) =B, HS=P"

" Applying the positive semidefinite st given by (15), equanon
(1) wll be posidive semidefinite if: «

A ~aP H.TA,'T"8,P20 29

Equation (25) can be simplified somewhat by arbicraniy fiung
each element in the congoller input gain magix 84 © be :qual

.to the square of the corresponding control filter nawral

frequency, for example (S filters and 3 inputs):

(@} 0 0]
o, 0 0|
8 (rxmi=| 0 @, 0| 25
l 0 ol 0}
o 0 u)

Substimiting a matrix of the form of (26) into (22) resuits n the
sumpie inequality constraint on the output gain marmx:

A, -aP'HP20 an
where,

Zh,

H (mxm)=

zh,
-

and the symbol T h, indicates a sum of the eiements in the
vecior by given in equation (21).
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The AVA and PPF conool designs (with displacement
feedback) are compared on a single degree of freedom (SDOF)
undamped sysiem [figure 1]. As can be seen from the root
locus, the addition of the zeros on the real axis give the AVA
congroller its infinite gain margin, The asymptodc behavior of
the root locus in the multiple degree of freedom (MDOF) case
would be similar 1o SDOF case due to the interlacing of the
poles and zeros in collocated feedback. Observing the
congoller magnitude versus frequency response it can be seen
that the AVA contoller does not roll off at higher frequencies.
Thus in a real system the AVA gain is limited by the higher
frequency dynamics. This is an important difference between
the AVA and PPF conmroller. The PPF control gain is limited
by the stiffness of the structure (equation (27)) while in the
AVA congoller the gain is limited by higher frequency
dynamics, which are often unmodelled in the conuol design.

| .’3. CONTROLLER OPTIMIZATION

The testbed for the AVA and PPF contollers is a smant
flexible antenna structure (Figure 2]. Multi-Input-Multi-
Output (MIMO) control capability is provided by the five
collocated piezoelectric sensor/ actuator pairs which are
bonded to five of the eight antenna ribs. With the exception of
the inclusion of piezoelectric elements, the test antenna is
similar (but smaller in scale) to the non-smart antenna which is

a7




PPF Controller AVA Concroller

Syatess oquations X > @R = gho, %, i« o)t = glax, - gmix

% - 2023 - @ =t %, ~ 208k - 8% =1

o A ol e T

- AAA " ‘n .0 - A: 3 ‘*l'u
Physical anaiogy IR i o E EMWIEIZS 2 l z
(gwgain) “ s - e =
1o} L oM 1) H

. 1|

Controller magnituds , Tag (&) | mag
vs frequency
», @,
b e
g imag
(g
Root locus

’Whn:gﬁ-im,’. AgmaB. Ana0 Ay e 20, STBad S8y =1 Hagio!. and for AVA G 3q0

- )
|{!-d\| | X

s(s* La)
(#+ 500l

—?

- T2 1

_—

Figure 1: Comparison of PPF and AVA for the single degree of freedom case displacemen: feedback .

part of the CSI Evolutionary Model located at NASA Langley
(4]. Each collocated sensor/ actuator is manufacumred from a
single sheet of piezoelecwic material (0152 x 6.4 x 2.3 cm.
Piezoelectric Products material G1195). The electrode surface
of the pi ic is separated into two electricaily isolated
areas (Figure 2]. One electrode area serves as the actmator and

the second area serves g3 a2 sensor. The control laws are’

implemented digitaily with a sampling rate of 1000 Hz using a
Systolic Systems’ Optima 3 digiral controller and response data
is collected using a Tektromix 2630 Fourier Analyzer
(Telaronix Inc., Campbell, CA).

An open loop SISO pole zero mode! is ideatified using a
recursive lattice structure (RLS) identification program which
is pat of the Tekuonix software package. In this SISO model,
bodls the disturbance input snd seasor output are at rib 1. The
model inciudes frequencies from 0 w 20 Hz and a cluster of
five closely spaced modes is identified between 9.6 and 17 Hz.
Not incinded in this model are the repeated namral frequencies,
the second cluster of modes between 30 and 40 Hz and
subsequent higher modes. The first cluster to each

individual rib vibrating in its first mode and the second cluster

corresponds to each rib vibrating in its second mode. The
repeated natural frequencies can only be identified with 2

complete MIMO identification. A constrained cpumizauon
routine is used 0 design the congoller parameters 44, .\g, and
Ape. The optimization minimizes the cost function:

1= J7 (i vl @)

where y(/) is the antenna response © a unit impulse and «(¢) is
the congol effort. Values for the weight w are adjusted t0
achieve the best rade off between minitnizing the impulse
response and minimizing the control effort.

In the control design each acwator is capable of having
multiple filters associated with it, i.e., in the mawices
A (rxr) and A, (rxr), ris not necessarily one. Using the
PPF conurol, the optimization is performed on the SISO model.
both using one control filter and using two control filters. Itis
found that no significant reduction in the cost function is
obuined using multiple filters. This can be attributed to the
fact that the five modes are closely spaced and the mode! does
not include higher frequency modes. Therefore, only a single
filter per actuator is ased in the final design. Table 1 lists the
optimized parameters for the AVA and PPF contoller and the
optmizarion weight w.
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Figure 2. Schematic of :he exoerimental smart antenna.

The opumizagon of the control parametersis based on the b 1
SISO (ransfer function. When the MIMO cznuol is
implemented experimentally, conaol parameters found from
the rib | optimization are used cn all of the contolled nbs.
Thus the maaices A, and 3., A and A, are diagonal
mawices respecavely of the farm  diag(h, A, ...). dieg(b, b, ...).
diag(@e® Wo? ...) and diag(25,w, 25,0, ..) whers Ay, b,. w5}
1, ®, are the conwol parameters from SISO b 1
opamizagon.

Table 1: Optimized conirol parzmeters based on rib 1 SISO
model (N, =@}, A, =2{ w and w = weight).

PPF AVA
), 702 118.9
¢ 0.56 0.499
w 1 2.8

4. CLOSED LOOP TEST RESULTS

Three different active contol schemes are impiemented on the
smart antenna to compare their pesfarmance. All of the coatrol
strategies have the same objective: i increase damping in the
modes contained in the 9 w0 18 Hz frequency range. The first
design involves a single Positive Position Feedback filter
sensing and actuating on rib 1. The second design also uses
collocated control on rib 1, but the compensator is an Active
Vibration Absorber. Finaily, a multi-input-multi-output PPF
conwoller is implemented on ribs 1 and 2.

Singie-Input-Single-Output Control

Using the parameters obtained from the optimizaton algorithm
(shown in Table 1], a single PPF controller is implemeated on
the collocated sensor/ actuator pair located on rib 1. Open and
closed loop magnitude plots are shown below in Figure 3. This
single conmroller increases the damping in all of the modes,
illustrated by the rounded peaks of the closed loop magnitude
response., .
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Figure 3: Experimental open (dotted) and ciosed lanp (soiid)}
transyer functions for SISO PPF on the smart ansenna.

A second SISO congoller of the AVA type is implemented
using collocated conwrol on nb 1. For this design, a high
frequency instability at approximately 300 Hz ocours when the
gain is set 10 the optimal value. The primary reason for the
instability is that the digital impiementation of the conwoiler
causes a phase loss at the higher frequenc:es. Since the
magnitude of the AVA filter does not roll-off. it is sensiave w
unmodelled dynamics. The system is stabiiized by setting the
gan to approximately haif the optimal value.

The damping ratios for the closed-loop systems are obiained by
curve fitling the frequency respoases using the STAR Modal
Analysis package (Suuctural Measurement Systems, Milipits.
CA). Excspt for the mode at 17 Hz, the PPF contoiler
increases the damping more than the AVA filter. [n the lowest
two modes, the PPF controller increases the damping almost
twice as much. This result is due to the fact that the gain for
the AVA design is not set to its opimal value because of the
300 Hz instability. Thus, the constant gain magnimde at high
frequencies limits the performance of the AV A conuoller.

Table 2: Closed loop natural frequencies and damping ratios
for SISO AVA and PPF conol. Disturbance and sensor are
both at nib 1. Open loop results are shown for -omoparison.

Opes Loop AVA PPF
o 1% | o 1@l o |2(%
961 | 0.:9 9.61 | 0.61 967 | 1.23
[ 10321 037 | 1031} 084 | 10321 134
11.56 | 0.16 | 11.56 ] 0.5t | 11.58 { 0.72
12.55 | 0.13 | 12.53 ) 033 | 1255 | 0.44
16.97 | 0.51 1700 { 0.84 | 1702 | Q.73
Multipie-Input-Multiple-Output

The SISO results indicate that an increase in damping is
obtained using collocated PPF or AVA control. Unforwnatcly,
controlling one rib of the antenna does aot adequately address
the problem of having repeated natural frequeacies with
linearly independent eigenvectors. This difficulty is illustraed
by closing the PPF control loop around rib 1 and obuining 2
wransfer function between ribs | and 2 (Figure 4]. Although it
is not evident from the collocated wansfer function, there are
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two closely spaced modes in the region of 2.68& One of the
modes is well damped and the other is sull lighdy damped.

The problem of controlling these repeated namural frequencies
is addressed by implementing a2 Mult-[nput-Multi-Output
(MIMO) congoller. Since PPF does not suffer from the high
frequency instabulity problem of AVA, it forms the basis for
the two-input-twe-output design. The PPF controller designed
for rib 1 is implemented using collocated feedback on both ribs
1and 2. A closed loop Tansfer functuon between ribs | and 2
is also shown in Figure 4. Not only do ail the modes show an
increase in damping, both modes a1 9.69 Hz are attenuated.
Curvefining values are consistent with this resuit. With onfy a
single control loop closed. one of the modes at 9.69 Hz has
only light damping. [mplemendng the MIMO design increases
dampuwng in tus mode from 0.28 % 0 1.11 % Table 3.

Table 3: Closed loop natural requencies and damping ranos
for SISO and MIMO PPF. Disturbance iocz:ed at nd | and
sensor is at nbl.

SISO PPF VOIMOQ PPF

@ < (%) ) 1%
968 | 0.28 9.5 | 1.11
989 | 1.16 975 | 1.24
11.39 0.84 11.58 1.43
12.56 1 0.32 12.85 | 0.32
1703 | 0.76 1699 | 0.92

18
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Figure 4: Transfer funcgon between a disaurbance at rib 2
and the sensor at rib 1. Dotted line is SISO PPF on nib 1, solid
line is MIMO PPF on ribs 1 and 2.

S. CONCLUSIONS

- ..

A study in the control of an eight ribbed smart antenna was
performed. Vibration suppression was difficult for this

m.mumwmedeanm_

frequencies. Open loop transfer functions show that six lightly
damped structurai modes lie in the frequency range 9 o 18 Hz.
Further tests revealed that the first mode at 9.7 Hz was
acially 2 repeated natural frequency that was only visible
when exciting rib 2 and sensing at rib 1. e

Two separate control strategies were stdied, Positive Position

Feedback and Active Vibration Absorbers. The general

framework for these second order controllers was

and the similariues and differences of the two Methods 4,
discussed. Theorescal stabulity bounds were also deriveq nt
PPF congol being conditonally stable and AV A control be--
unconditionally stable. Aa important difference betwesn ..
two types of congol was that 3 PPE Blter rolls off 3 hig;Q
frequencies while the AVA congoller maintains 3 congy,
gain. The roil off characteristic of PPF is an ancs
makes it less seasitive 0 unmodeiled dynamics. [n rp.
systems, the stability of the AVA congol is determuned by -
high frequency response of the squcture, which is often
known with any accuracy.

Both types of congol were successfully implemented ¢n -+
smart antenna. The performance of PPF and AVA we-
compared on a SISO design using one acuve nb. Each deg:
consisted of only one second-order controller since aumerc.
sumulations indicated that there was no significant advantage
using mulupie filters. Both types of congol were able
increase the damping in the target modes. PPF cone
produced better results since it was not limited by unmode; !,
dynamics. Uaformnately, the SISO congoller did
adequately address the problem of repeated natwr
frequencies. A MIMO congroller was implemented using >t
congol on ribs 1 and 2. Not only did not the MIMO conae;
improve the overall performance, it ‘¥as able 10 add damping
a repeated mode at 9.7 Hz.
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ABSTRACT

A procedure based on convex optimization is used to design collocated control laws for a small-scale
model of a flexible antenna. The objective of the active control is to minimize the response of a single rib
to a disturbance occurring at a remote location on the structure. Two separate designs are examined. The
first is standard Linear Quadratic Gaussian (LQG) control, whereby the H, norm of the transfer matrix is
minimized via the solution of two Riccati equations. Unfortunately, this type of design does not exploit
the favorable attributes of sensor/ actuator collocation, resulting in control laws that are not robust to
model uncertainty and structural variations. An optimization approach to H, optimat design is presented
that bounds the phase of the control law, thereby increasing its robustness. The optimization is shown to
be convex, providing important guarantees on solution accuracy and convergence. Control laws designed
with both procedures are experimentally implemented on the antenna testbed. The results illustrate the
advantages of designing H, optimal controllers that are bounded in phase.

INTRODUCTION

Active control of structures such as flexible ribbed antennae is complicated by the high modal density that
results from mode localization. Mode localization is a function of the coupling between the individual
ribs of the antenna and is very sensitive to structural imperfections and variations [Levine-West and
Salama (1993)]. This phenomenon creates clusters of closely spaced and repeated modes, making the
design of active control systems a more complicated process [Garcia, Dosch, and Inman (1992); Dosch,
Leo, and Inman (1992)]. Since the mode shapes and natural frequencies of the antenna are sensitive to
small structural changes, control law robustness is a priority. Increasing the robustness of the control law
motivates the use of sensors and actuators that are collocated with one another, thereby assuring that all
modes are in phase between the control input and the sensor output. This attribute of collocated control is
exploited by designing Single-Input-Single-Output (SISO) control laws that are bounded in phase.
Bounding the phase of the control law insures robustness to certain structural uncertainties such as
inaccurate characterization of the structural damping.

Unfortunately, many optimal control techniques do not take advantage of the phase properties that exist
when sensors and actuators are collocated with one another. One common design method is Linear
Quadratic Gaussian (LQG) control, which minimizes the H, norm of the outputs due to white noise
disturbances [Maciejowski (1989)). The performance objective specified by LQG control is relevant to
many control problems, since minimizing the H, norm is equivalent to minimizing the Root Mean Square
response to a white noise disturbance in all inputs [Boyd and Barratt (1991)). In general, though, LQG
control can exhibit arbitrarily poor stability margins [Doyle (1978)]. Even for the case of collocated
sensors and actuators, LQG synthesis can produce controllers that are sensitive to variations in the natural
frequencies and damping ratios of the structure [Friedman and Bernstein (1993)].

The approach taken in this paper is to frame the LQG problem as a constrained cornvex optimization. The
constraint on the optimization forces the phase of the SISO control law to lie within certain regions of the
complex plane, essentially bounding the phase of the compensator's transfer function. When used in
conjunction with collocated sensors and actuators, the control law exhibits increased stability robustness.



The coustraint is applied to a convex optimization that minimizes the H; norm of the closed-loop transfer
matrix. The optimal feedback control law is obtained via the solution of a finite dimensional optimization.
Since the cost function and constraints of the optimization are convex, the global minimum can be found
to any desired degree of accuracy if a feasible solution exists. Techniques for solving such optimal control
problems are outlined in a recent monograph by Boyd and Barratt (1991).

CONSTRAINED LINEAR QUADRATIC GAUSSIAN SYNTHESIS

PROBLEM DESCRIPTION

Consider the block diagram of a dynamic system illustrated by Figure 1. The system is assumed to be
linear and time invariant, with a set of exogenous inputs, w(t), and a set of control inputs, u(f). The
regulated outputs are denoted :(r) and the sensor outputs are denoted y(¢). All inputs and outputs are
multivariable, with dimensions n,, n,, n., and n,, respectively.

| ) JSSS—— e Z
P(s)
U ‘—u — Y
— Py DU

Figure 1: Block diagram of a multivariable system, illustrating the feedback connection.

The open loop system is described in the Laplace domain by a set of four transfer matrices, P,,(s), P.,(s),
Py, (s), and Py,.(s), where s is the Laplace variable. The subscripts denote the input/ output pair of the
transfer matrix. The set of equations for the open loop dynamics are

Z(s)= PM(S)W(S)+ P:u(s)U(s)

. 1

F(s) = Py (s)W($)+ Pyu )U(s) M
Z(s), Y(s), W(s), and U(s) are the Laplace transforms of z(t), y(¢), w(t), and u(?), respectively. By
substituting the feedback connection

U(s)= K(s)Y(s) (2)

into equation (1), the expression for the closed-loop transfer matrix between z(¢) and w(¢) is found to be
z =[Pa, + P K(I-P k)" P,,,]w. 3).

The Laplace notation has been dropped for convenience. The expression in brackets is denoted H, and
represents an a, x n,, complex matrix. The standard LQG problem is to minimize the H, norm of the
closed loop transfer matrix by searching over all X that stabilize H. This problem can be solved by the
solution of a Kalman filter problem and a linear quadratic regulator [(Maciejowski (1989)]. Our objective
is to constrain the controller to have a phase bounded by -180° and 0* while simultaneously minimizing the
H, norm of certain closed loop transfer matrices.

To understand the motivation for constraining the phase of K, examine the second order equations of
motion for a flexibie structure. Under the assumption of modal damping, the equations of motion can

always be decoupled into
FF(e) + AK(r) + Ar(r) = Du(s), @)

where r(z) is the vector of modal coordinates, I is an appropriately sized identity matrix, and @ is a vector
of modal participation factors. The matrix A is a diagonal with entries 2{;;, where {; is the ith modal
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damping ratio and @) is the i*d natural frequency. The matrix A is also diagonal, with entries @?. All
modal damping ratios and natural frequencies are assumed to be greater than zero, therefore no rigid body
or marginally stable modes exist. In this paper, we assume that only a single actuator and sensor are
available for feedback control, i.c. n, =n, = 1. If collocated displacement sensors are used for feedback

control, the output equation is
yt) = ®Tr(2). (5)

By combining equations (4) and (5), the transfer function P,,(s) is

Puls)= z +24’,m:+w ©)

where n, is the number of modal coordinates, r(f), and ¢;is the ith entry of ®. Equation (6) can be
separated into real and imaginary parts by substituting s = jo into the expression for P,,(s). This results in

2 N

-j(2¢0,0
Py (jw)= Z¢. = ) 2o )2 ™

=l ( f - ) +(2¢0,0)
The important feature of equation (7) is that the imaginary part of P,,(jw) is always negative for positive
. This bounds the phase of the transfer function to be between -180° and 0°. Assume for a moment that
the phase of the controller is also bounded between -180° and 0°. An application of the Nyquist stability
criterion reveals that an encirclement of the {1,0} point in the complex plane (remember, we have
assumed positive feedback) is only possible at the point @ = 0. At zero frequency, the gain of

P, (i0)K(jw) is

P, (j0)K(j0) = K(JO)Z"LT (8)

Equation (8) must be less than one for stability, and the inverse of its value represents the gain margin of
the system.

A CONVEX OPTIMIZATION APPROACH TO H, MINIMIZATION

We now turn to the problem of forming the H, control problem as a convex optimization. As mentioned
before, the standard LQG solution is found by solving two Riccati equations. In order to constrain the
phase of K, we will need to find convex functionals that represent the H, norm of the closed loop transfer
matrix. To do so, we first examine the expression for H. Referring to equation (3),

H="P,, +P,K(I-PK) P, 9)
After introcucing the expression
Q=K(I-P,K)" (10)

into equation (9), the closed loop transfer matrix is written as

H=P, +P,QP,,. an

Since the system is open loop stable, placing any stable matrix Q into equation (11) will result in a stable
closed-loop. This is the Q (or Youla) parameterization of all stabilizing controllers [Maciejowski (1989)).
Introducing equation (10) into the expression for H transforms the H; minimization problem into one of




finding a stable Q that minimizes the 2-norm of the closed-loop transfer matrix. As stated, this is an
infinite dimensional optimization problem, since theoretically we must search over every stable Q to find
the minimizer. To transform this into a finite dimensional optimization, the approximation

Q=ixiQ; (12)

il

is substituted into equation (11). Once this is done, the expression for the 2-norm of the transfer matrix
can be written as [see pg. 271 of Boyd and Barratt (1991)}

i
§HY, = (x"Ax+bTx+c)?, (13)

where A is a symmetric }aosmve definite matrix, ¢ is a real scalar constant greater than or equal to zero,
and x = {xy, Xy, .... , Xo} . Equation (13) is quadratic in the design vector x, therefore it is convex. By
introducing the series approxxmau‘on to Q into the optimization, we have transformed the problem from a
search over an infinite number of stable transfer matrices to one over a finite number of real variables. A
more detailed treatment of this section is found in Boyd and Barratt (1991).

BOUNDING THE PHASE OF K(jw): A CONVEX CONSTRAINT

The previous section established that the H, norm of the closed-loop transfer matrix is expressed as a
quadratic function of a finite number of real variables. This section will use the same parameterization of
all stabilizing controllers to define another convex function that bounds the phase of the controller, K.
Solving equation (10) for X yields

Q
= . 4
1+QP, (1

The matrix notation has been dropped to emphasize that this analysis is only valid for control systems with
one sensor and actuator (n, =n, = 1). Let us introduce the following notation for the real and imaginary

parts of Q and P,,,
0(jw) = Ry(@)+ jlg(®)

. . . (15)
P, (j@)= Rp()+ jlp(@)
Separating equation (14) into real and imaginary parts yields

(1 +RyRp - 101,) +(10R,. + RQIP)

where the @ notation has been dropped. Introducing equation (12) into equation (16), the real and
imaginary parts of Q are written in vector notation as

.'
Ig= xlg=1px
=l ) amn

Ry = Z'x,ko, =RYX




Upon examining equation (16), it is clear that since the denominator is simply a sum of squared terms, the
sign of the real and imaginary parts of K is determined by the numerator. Substituting the previous
expression into the numerator of equation (16) produces a quadratic expression in x,
lax + R,erx + j(la-x - I,erx)
. (18)
T
E=RyR}, +1515 20

Equation (18) reveals that bounding the sign of the real and imaginary parts of the controller is expressed
as a quadratic constraint of the design variables x. For collocated displacement feedback, we want to
bound the phase of K to lie between 0° and -180° for all positive @, which is equivaleat to

15x~I,x"Ex<0 for all @ > 0. (19)
EXPERIMENTAL TESTBED

FLEXIBLE ANTENNA MODEL

The convex optimization procedure is used to design active control laws for a small-scale model of a
flexible ribbed antenna. The antenna is modeled after a similar structure that existed on the Phase 0
Evolutionary Model housed at NASA Langley Research Center [Belvin, ez al (1990)].

Flexible rib

accelerometer

Perturbed structure created
by placing masses on

ribs 2, 4, 6,and 8.

actuator

d

- - > -
39.4 inches 2.52 inches

Figure 2: A schematic of the flexible antenna model illustrating the rib numbering scheme and the placement
of the actuators and sensors.

The antenna model consists of eight beam-like ribs that are attached to a plastic hub [Figure 2]. The outer
edges of the ribs are connected by metal wire which has been tensioned to give the antenna a parabolic
shape. Five of the eight ribs have piezoceramic material [Piezoelectric Products material G1195] bonded
near the clamped ends. Each ceramic is divided into two electrically isolated areas, the larger area is
used an actuator and the smaller area is used as a collocated sensor. The sensor signal from each
piezoceramic is conditioned by passing it through an analog low pass filter with an input impedance of 10
MQ and a comer frequency of 10,000 Hz. Due to the high input impedance, the output signal of the filter
is a voltage proportional to the strain in the piezoceramic at frequencies greater than approximately 3 Hz.
Strain is analogous to displacement in terms of its frequency response properties. The voltage into
actuator ceramics is amplified by a Hewlett-Packard amplifier with a range of £ 50 volts.




The rest of the test equipment is as follows. Data acquisition is performed using a Tektronix 2630 Fourier
Analyzer. A Kistler accelerometer is placed on rib 2 to measure vibrations. The digital control hardware
consists of dSpace digital signal processing chips. The optimization routines used in the control design is
written in Pro-Matlab on a Sun workstation.

CONTROLLER DESIGN
CONTROL OBJECTIVES

The objective of the active control is to reduce the vibrations of rib 2 to a disturbance occurring at a
remote location on the antenna. The disturbance is provided by exciting the antenna with the actuator
located on rib 1. Vibrations of rib 2 are measured with an accelerometer located at approximately half the
length of the rib. The control system consists of the piezoceramic sensor/ actuator pair on rib 2.

MODELING OF THE FLEXIBLE ANTENNA

The first step in the control design is to obtain a model for the flexible antenna. In this paper, a modal
approach is used, whereby the Muiti-Input-Multi-Output (MIMO) is synthesized from a set of SISO transfer
functions. The procedure is described in detail in Dosch, Leo, and Inman (1993). A brief overview is
presented here.

First, SISO transfer functions are experimentally determined over the frequency range 5 Hz to 25 Hz. This
frequency band is chosen because it contains the first eight flexible modes of the structure. This group of
modes represents the motion of the antenna caused by each beam vibrating in its first mode. A second
cluster of modes exists between 35 Hz and 45 Hz, but these are ignored in the modeling analysis and
control design. For this paper, three SISO transfer functions are needed to produce a model for control
design: input PZT rib 2/ output PZT rib 2, input PZT rib 2/ output PZT rib 1, and input PZT rib 2/ output
accelerometer rib 2. These three transfer functions are modeled separately by curve fitting the individual
transfer functions. This assures that the SISO models are accurate over the desired frequency range. Next,
the individual transfer functions are separated into poles and residues and combined into a MIMO model.
The final model is of the form

F+AF+Ar=0, w, +Qu
Z, =@ r+(0.085)u . (20)
F=@lr+(5x107)u

where

®,=[10.1 2.5 38 2.8 4.2 64 6.4 19
®, =[-1L1 1.0 -2.6 13.6 0.2 L1 -2.8 2.6]
®, =[-12 0.4 -L4 0.8 0.6 -L7 -L4 -L7] x107 . (21)
A=diag[0.34 0.32 0.45 0.28 0.14 0.40 0.37 0.24]
A =diag[1.25 0.62 0.55 0.50 0.48 0.44 0.37 0.35]x 10*
The direct transmission terms .in equation (20) are necessary since certain transfer functions have the
same number of poles and zeros in the frequency range 5 - 25 Hz. The assumption of proportional

damping does introduce some error intc the model, but greatly simplifies the modeling procedure. A
model for the displacement of rib 2 is obtained by dividing the experimentally obtained transfer function

by 52 and placing it into the modal model shown above.

Equations (20) and (21) represent the model of the nominal structure. The control laws derived in the next
section are also tested on a perturbed model of the antenna. The perturbed configuration is obtained by
placing 15 gram masses on ribs 2, 4, 6, and 8. This has the effect of lowering the natural frequencies.
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Changing the modal parameters and testing the control laws is a measure of the robustness of the design.
A discussion of control law robustness is provided in the section on experimental results.

LINEAR QUADRATIC GAUSSIAN SYNTHESIS

A first set of coatrol laws is designed using L.QG synthesis. Using a previously published procedure, a
trade-off curve for the control law is obtained (Boyd and Barrait (1991)). The trade-off curve represents a
comparison between the performance achieved versus control effort required. To find the trade-off curve,
the control problem is placed into standard plant form, as illustrated by Figure 3.

actuator
outpui
» 2
rib 1
disturbance -
Zz Y
ot » Nominal W, 0 > 2
Antenng .
3 rib 2 accelerometer
Model Y 0o W
noise —P ?| response
w, —»10.01 @
control control
actuators sensors
u —_ Y

Figure 3: Standard plant for the LQG control design.

The weight W, is included in the open loop to eliminate the direct transmission term and make the plant
strictly proper. This is done to eliminate numerical error that occurs during the solution of the optimal
control problem. The weight is chosen to be

(1000*2* x)?

W_ = . 22
P~ s 4+(2%0.10%1000*2 * x)s +(1000*2 * 7)° 22)

The inclusion of W, into the model does not affect the response in the frequency range 5 - 25 Hz. With
the addition of the weights into the open loop, the model used for the control design is augmented to
20 states.

The trade-off curve represents a comparison of two functionais of the closed-loop transfer matrix. The
performance measure is

1
Gperr = (IHzllg "’lezl:)z , 23)

and the measure of control effort is

1
oy = (|H,,|: +|Hu|§)2. (24)




Hj; denotes the closed loop transfer function between z; and w;. The trade-off curve is obuained by solving
the optimal feedback control problem .

1
min(3192g + 18707 )2
st Ay =1-2, '

23)

for A, @ (0,1). For each value of A,, an LQG problem is solved via the two Riccati solution to obtain
values of §p.yand ¢ By varying 4, between 0 and 1, the whole design space is searched. The
resulting trade-off curve is shown in Figure 4. The performance measures are normalized versus the open
loop value of @,y o =298.94 um.
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Figure 4: Trade-off curve for Linear Quadratic Gaussian control.

Figure 4 yields information regarding the achievable performance with LQG control. The trade-off curve is
the boundary between feasible and infeasible solutions. All points 'above’ the curve are achievable by
some controller X, and none of the points below' the curve are achievable by any linear control law. For
example, one cannot produce an 80% reduction in ¢, (as compared to the open loop) without increasing
@cer to at least 4.5. These guarantees on the optimal solution result from the fact that equation (25) is a

convex optimization with respect to 4,.

Three LQG optimal controllers are chosen from the trade-off curve for implementation on the flexible
antenna. Each represents an increasing level of performance and control effort. The first, Kj,, is designed
for low performance and low control effort. The second, K,,, is a controller that decreases the
performanc - objective but uses more control effort. The final compensator, K,,, exhibits the best expected
performance without unduly increasing the control effort. The increase in performance obtained by
implementing controllers which use more control effort is not worthwhile, as indicated by the trade-off
curve for the LQG design. Table 1 lists the values of ¢,y and 9.y for each of these control laws.

Table 1: Normalized performance measures, control effort, and size of the six optimal controllers.

Soert number of  constr et number of
LQG Spert ol O.:g states H, Soert ol S states
Ky 0.156 5.385 20 Ky’ 0412 2.573 10
Kep 0.533 1.643 20 K.’ 0.487 2051 14
K L]

K. 0.708 0.812 18 i 0.595 1.346 15
r




CONSTRAINED H, MINIMIZATION

The constrained optimization approach to H, optimal design is also used to obtain control laws for the
flexible antenna. To begin the procedure, we must first choose a set of Q functions for the approximation
described by equation (12). For comparison, four sets of functions are chosen. This allows us to study the
convergence properties of the optimal solution. The four sets of parameterizations are

set 1. x,Q”-f-z (s+100)“ set 3: x,Q~+iZ (S+200)H

i-1 i-1
set 2: "IQM"'Z \s+100) set 4: x,Q,,p-t-z (s+200) ) (26)
where
K K
0. = Q,=—2 . 27
™ 1-PuKny ® T 1-P.K,

Choosing the first Q function to correspond to one of the LQG optimal controllers improves the
convergence properties of the solution. By choosing the functions in this manner, the controller that
corresponds to the point x = [1 0 0 ... 0] is either K,,, or K},, depending on parameterization. Increasing
the number of basis functions beyond 30 results in only a negligible decrease in the cost function.

Once a set of Q functions is chosen, the following optimization is performed for each parameterization,

1
min P, (X)= (xTAMx +b,,,,rx +cﬂ,,)2

1
st Pug(X)=(xTAgX+bog X4 )2 < @ (28)
max[lr,-(m,- )x-Ip(o; )er(a)‘.)x] <-.01.

The optimizations are solved using a coastrained ellipsoid algorithm. The termination criterion is chosen
to be 1 x 106, which indicates the calculated solution is within 1 x 106 of the actual solution.

The constraint on the phase, equation (18), is discretized with a 1000 frequency points between @ = 10
and 1000 rad/s. In this sense, equation (18) can be thought of as a family of constraints, in which the
maximum must be less than or equal to a constant. Since the maximum of a family of convex constraints
is also convex, this method of determining the phase does not introduce any local minima into the design
space. Discretizing the constraint in this manner does introduce numerical error into the optimization. For
this reason, the constraint is forced to be less than -0.1, as opposed to zero. If this is not done, then the
resulting optimal controller tends to violate the phase constraint at points not included in the
discretization. Another option is to increase the number of frequency points (say to 2000), but this slows
down the optimization considerably.

Another problem occurs for an optimization with such a large number of Q functions. Theoretically, A,
and A yshould always be positive definite symmetric matrices, but numerical error in the solution of the
Lyapunov equations causes them to have very small negative eigenvalues (on the order of -1 x 10°13).
These errors then cause problems during the solution of equation (28). To eliminate this problem, a smail
diagonal matrix is added to A,.rand A.gto change the lowest eigenvalue to a quantity just greater than
zero (on the order of 1 x 10713). The optimization is then solved with the new matrices.

As in the case of LQG synthesis, three controllers with varying performance levels are designed. They are
designated K*;,, K*,,, and K*,,. The amount of performance increase is controlled by varying « in
equation (28). Increasing o allows for greater control effort, which in turn lets the optimjzation reduce the




performance objective. The values of ¢,,,, and ¢ . for the three controllers are listed in Table 1. They
are also plotted in Figure 4 with the LQG trade-off curve. As expected, the controllers designed with the
phase constraint lie 'above' the trade-off curve. They also exhibit worse performance than an LQG
controller that uses the same amount of control effort. This again is to be expected, since the optimization
that bounds the phase includes constraints that are not present in standard LQG synthesis.

Comparing the convergence properties of the different Q parameterizations reveals that set 1 consistently
produces the lowest performance functions for a given control effort constraint (i.e. a given a). The fact
that the optimization results are a function of the parameterization is not surprising, but the variation in
results is unexpected. Sets 1 and 3 outperform sets 2 and 4 in all of the studies, with set 1 producing
slightly lower cost functions at the optimum. Also unexpected is the fact that setting a > 2.6 produced no
change in the optimal soiution. One would think that the optimal solution would lie on the control effort
constraint, but this does not occur. The reason for this could be convergence difficulties in the
optimization procedure. B

After solving the constrained optimization, the corresponding optimal controiler is obtained from the
expression

30

A",

K= izl (29)

= :
1+ [Z fo,-]Pw

i=l

where x;* are the elements of the solution to equation (28). On the average, these control laws contain 70
to 75 states. Balanced reduction [Glover (1984)] is attempted, but does not yield significant order
reductions without considerably distorting the frequency response of the controiler. A more straightforward
pole-zero cancellation produces better results. The i pole is canceled with the j® zero if

!p_,--;’,-h 0.01 30)

Pi

Setting the tolerance much higher than 0.01 changes the frequency response of the optimal controller
considerably by canceling out pole zero combinations that are not too 'close’ to one another. After
canceling out pole and zeros that satisfy equation (30), the controllers are reduced to between 10 and 15
states [Table 1].

EXPERIMENTAL RESULTS

All of the control laws are implemented on the flexible antenna model to test their performance and
robustness. Each is implemented in real-time on the dSpace digital control hardware sampling at 2000 Hz.
This sampling rate is deemed fast enough so that no digital effects are accounted for in the controller
design.

Closed-loop transfer functions are obtained by inputting white noise into the actuator on rib 1 and
measuring the output of the accelerometer located at the mid span of rib 2. Closed-loop performance is
measured in terms of the integral

i
25 N RY)
r= J‘Hzn jo) dol| , (€3]
s (/)]

where H,,(jo) is the experimentally determined transfer function. Equation (31) is similar to an H, norm,
and it is a convenient measure of the size of the transfer function over the frequency range 5 - 25 Hz. For
an unstable system, & is set to oe.




ACTIVE CONTROL OF THE NOMINAL AND PERTURBED STRUCTURES

All six control laws are implemented on the antenna model. Table 2 summarizes the closed-loop results
in terms of the performance measure, equation (31). For the nominal structure, each of the control laws
designed with the constrained optimization are stable in the closed loop. For the conwol laws designed
with standard LQG synthesis, only the low and medium performance controllers remain stable. The high
performance controller causes an instability at approximately 11 Hz.

The robustness of the phase constrained controllers is even more pronounced when comparing performance
on the perturbed antenna. For this case, both the medium and high performance LQG control laws are
unstable in the closed-loop. The frequency of the instability is again 11 Hz. All of the contollers
designed with constrained optimization remain stable. All of the control laws suffer a decrease in
performance, but this is to be expected since the designs are performed with the nominal model.

Table 2: Closed loop active control results on the nominal and perturbed structures.

Nominal Structure =, = 197.68 x 10

n/ m, r/ o
Ky, o0 Kyp' 0.372
Ky 0.521 K,,,,,' 0.456
Kjp 0.673 K, * 0.536

Perturbed Structure 1, = 132.05 x 10

/%, n/ Ty
Kmp oo Knp' 0.641
K, 0.803 K, 0.708

DISCUSSION OF THE EXPERIMENTAL RESULTS

The experimental results illustrate the utility of the phase constrained H, optimization procedure outlined
in this paper. Constraining the optimization produces control laws that are less sensitive to modeling
errors and structural variations. The instabilities caused by the high performance LQG controller indicate
that it is not very robust. In controlling the unperturbed structure, LQG synthesis and constrained
optimization produce similar closed-loop performance. Due to the accuracy of the nominal model used for
control design, the predicted performance and the experimental results agree weil. When implementing
the control laws on the mass-loaded antenna, the reduction in the natural frequencies causes the medium
performance LQG design to induce closed-loop instability.
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Figure 5: Magnitude and phase plots of K',,.p( jW)Py,(jo) (solid), and K, (j0)P,,(j®) (dashed).

Examination of the transfer functions K,,(jw)P,,(jw) an K*,,(j@)P,,(jw) illustrate the advantage of
constraining the phase of the controller [Figure 5]. For the medium performance LQG design, two cross-
overs of -360° occur within the frequency range 5 to 25 Hz. From the Nyquist Stability Criterion, closed-




loop instability will result if the magnitude at phase cross-over exceeds one. As the structure is perturbed,
the changes in the modal parameters cause the magnitude in this frequency region 1o exceed one,
resulting in closed-loop instability. The instabilities that occur in experiments are at a frequency near 11
Hz, precisely the region where the phase of K, ,(j@)P,,(jo) crosses -360°. In contrast, the phase of
K® o, (j®)P,,(j@) never crosses -360° between 0 and 25 Hz, making the control law insensitive to changes
in the magnitude and phase response.

CONCLUDING REMARKS

Experimental implementation of H, optimal controllers designed via constrained convex optimization
illustrated the robustness achieved by vounding the phase of the compensator. In comparison with
standard Linear Quadratic Gaussian (LQG) designs, they remained stable in the presence of structural
variations and model uncertainty. The loss of performance that resulted from constraining the optimization
could be compared to 2 trade-off curve that represented all achievable LQG solutions. In this way, convex
optimization proved to be effective method of studying the trade-offs associated with constraining the
phase of the controller.

Although the results of this paper are encouraging, many questions arose regarding the convex
optimization approach to control design. For example, the optimal solutions were found to be sensitive to
the choice of functions used in the Q parameterization. Furthermore, the optimization seemed to exhibit
convergence properties when the constraint on the control effort became large. Checking the phase
constraint at discrete points (even for a fine grid) introduced errors into the control design. Finally, the
pole-zero cancellation procedure used in this paper was a rather ad hoc method of order reduction, the
reasons why more advanced methods were ineffective needs to be investigated. Future work involves
studying these topics anc also generalizing the phase constraints to contrei systems with more than one
sensnr and actuator.
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LINEAR CONTROLLER DESIGN FOR STRYCTURES
WITH UNCERTAIN TRANSIENT DISTURBANCES

Donald Leo*
State University of New York at Buffalo
Buffalo, NY 14260

Abstract

Convex optimization techniques are developed to
design feedback control laws for structures with
uncertain transient inputs. The uncertain
disturbances are modeled deterministically as
convex sets of functions. Three types of modeis are
considered: one which bounds the total energy of the
disturbance, another which bounds the instantaneous
energy, and a third that limits the maximum and
minimum values of the input. Expressions for the
maximum response are derived for each model. The
optimal feedback control law is found via the
solution of an infinite dimensional optimization,
which is reduced to a finite dimensional optimization
bv an affine parameterization of all stabilizing
controllers.  The parameterization maintains
convexity and converges to the unique solution as
the numbe:; of terms in the approximation is
increased. The techniques are illustrated on a simple
model of an unconstrained flexible structure.

Introduction

The objective of many structural control problems is
minimization of the response due to uncertain
transient inputs. In the case of satellite design,
critical scientific instruments must be isolated from
disturbances caused by other payloads on the
structure; an automotive application might involve
minimization of cabin noise level due to engine
vibration; finally, reducing peak responses of
structures is imperative in the earthquake
engineering community due to safety considerations
and legal requirements. For all of these examples,
the uncertain nature of the excitation makes
obtaining an explicit model for the inputs impossible.
Oftentimes the disturbances can be bounded over
their duration, even if the exact nature of the signal
is unknown.

Several modern control methods have been
developed to deal with the problem of uncertain
disturbances. H, theory (also called Linear

Danie| Inman**
Virginia Polytechnic Institute and State University
Blacksburg, VA 24061-0219

Quadratic Gaussian theory) is concerned with
optimal control when white noise disturbances are
present in the plant and feedback signal'.
Minimizing the H, norm is equivalent to minimizing
the Root Mean Square (RMS) value of the output.
H. control minimizes the RMS gain of a system
disturbed by signal: with finite energy?. When the
disturbances are persistent, it is more appropriate to
minimize the L' norm of the impuise response
function. This problem was posed by Vidvasagar’
and solved for continuous time control systems by
Dahieh and Pearson®.

When the disturbances are transient with known
duration, it would be advantageous to include that
information in the design specifications.
Unfortunately, H,, H.,, and L! control methods are
not particularly suited to deal with information
concerning the duration of the disturbance. Because
the definition of the 1, 2, and e norms is an integral
from time equals zero to infinity, these measures of
the output might be overly conservative if the
disturbances are transient. Also, these techniques
are usually applied with frequency design
specifications, which do not always correspond to
exact time domain constraints.

The purpose of this paper is to develop techniques for
optimal disturbance rejection of unknown but
bounded transient inputs. The following two
assumptions are made: the duration of the inputs is
known, and the disturbances are modeled
deterministically, as sets of functionals. Modeling
uncertain inputs deterministically is the subject of
the first part of the paper. The approach is motivated
by recent applications of convex analysis in applied
mechanics’, and results relevant to control design are
presented here. Obtaining the optimal feedback
controller is an infinite dimensional optimization
problem over all feasible transfer matrices$. The
optimization is reduced to one over a finite
dimensional subspace through the introduction of an
affine parameterization of all stabilizing controllers.
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Aecrospace Enginecring, Student Member AIAA

**Samu.. Herrick Professor, Engineering Science
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The techniques are illustrated on a model of a simple
flexible structure.

..
:W" p ——
The system under consideration is assumed to be
linear, time invariant, and described by the following
equations
x(r) = Ax(¢)+ B, w(z)+ B u(s)
z(t)=Cx(f)+D_u(r) ., n
y(1)=C,x()+ D, w(z)

where A € R"" is the state matrix, w(r)e R"™ are
exogenous disturbances, u(t)eR™are control
forces, z(t)eR™ are regulated outputs, and

y(z) e R™ are sensor outputs. The block diagram for
this system is shown in Figure 1.

W(t) ————— - Z(0)
P(s)
u(t)‘—> ———-—>;Y(f)
eceemeeneen (O] T—

Figure 1: Block diagram for multivariable plant,
illustrating the feedback connection.

In the Laplace Dormnain, the system is described by
four transfer matrices, P.,(s), P,,(s), P,,(s), and
P,,(s), where s is the Laplace variable. The
subscripts denote the input/output pair of the transfer
matrix. The feedback connection is

U(s) = K(s)Y(s), 2)

where K(s) is n, x n, transfer matrix of a linear time
invariant controller. Optimal design of the control
law is accomplished through the Q (or Youla)
parameterization of all stabilizing controllers!. First,
the system is augmented by estimated state feedback
(Figure 2]. The gains K4 and L, are chosen such
that A - B,K, and A - L,,C, are stable. This could
be done using Linear Quadratic Gaussian techniques,
for example. The estimated state feedback is then
augmented by another n, x n, transfer matrix, Q(s).
The input to Q(s) is the state error, e(f), and the
output is injected into the system such that

u(e) = v(r) - K 5 (2), @

where v(r) are the outputs of Q(s) and X(¢) are the
state estimates.

w(@) ——B, , C, U
u() B, WA ¢, ¥
———B, 3 C’—fg)
(sI-A)!

| [ |

CIP - <
*A °  Siate Estimated Feedback

R R I R e N reapiouepiapay iy

v(0) 0

Figure 2: Estimated state feedback controller
parameterization.

The augmented plant is now described by three
transfer matrices, P,,, P,,, and P,,. The transfer
matrix P,, is identically zero because the error states
are uncontrollable from v(f). The closed loop
transfer matrix of the augmented plant is

H(s)=P_,(5)+P_(s)Q(s)P,,(s). 3)

Stability of H(s) is guaranteed if Q(s) is a stable
transfer matrix. The important feature of equation
(3) is that it is affine in the free parameter Q(s) .

DRisturbance Modcls

The uncertain excitations are modeled
deterministically as either a finite set of known
inputs or an irfinite set of bounded but uncertain
disturbances. .he first disturbance model assumes
that the uncertain excitations exist within a finite set
of known inputs,

WFIN= {wl @, ... 'uu'(‘)lo (4)
where ni is the number of inputs. The second

disturbance model bounds the maximum integral
energy of the exogenous excitation.

Wies = (w@): [ WP (ipw(e)as <o) )




It is assumed that the disturbance acts over a known
duration, 0 to T. The scalar bound on the input
energy is p,z. A similar disturbance model is

obtained by bounding the instantaneous energy of the
input.

Wiep = (W) : wT ()w(r)Spi(r)) (6)

The bound on the instantaneous energy is p,z_(t). A

final disturbance model bounds the maximum and
minimum values of the input, and is called the
temporal envelope bound model.

Wres = (W() : f () Sw;(e) < fy;(1)) N

The jth column of w() is denoted wy(r) and the upper
and lower bounds on w(t) are f;;(r) and fy;(¢),
respectively.

Maximum Responses To
Uncertain Inputs
Assuming zero initial conditions, the regulated

outputs are related to the exogenous disturbances
through the convolution integral,

z(t)= I;h(t - 7)w(t)dT, @) .

where h(z) is the inverse Laplace transform of H(s).

Given a finite set of input disturbances, Wg;y, we
denote the maximum response of the ¥ output to the
i disturbance as

Z = J’o“ B8 (1 ey — T)W; (2)dT, ®

where h/¥y) is the k" row of h and ¢, is the time at
which the output attains its maximum.

For the remaining models of uncertainty, derivation
of the maximum respouse is more involved. First
consider the case of an Integral Energy Bound (IEB)
excitation model (equation (5)). The maximum
response of the k*" output to any input contained
within the IEB model is found via the Cauchy-
Schwarz Inequality. Referring to equation (8),

0 0

] : r ;
Ih(”(r -tw(t)drs [Ih""(r -t (- r)dtI x

1
! 2
[I wl(t)w( 1)41]
0
(10)
The maximum output occurs when
w(t) < b® (1= 1) = y,b® (1= 7). (11)

The scalar constraint ¥ is obtained by invoking the
energy constraint, equation (9).

t
T
y,z'fh“"(t- ™ (1 - 7)dr = pf. (12)
0

Solving for ¥ yields

7= LJ] . (13)

[
[ I b (r = 2)b®" (s - t)df]i

0

The expression for the maximizing input function of
the kt output, W'(¢), for the IEB model is

- h* (e -
wit(1)= pb(t-1) -, (14

[]’ b (¢ - 2)a®" (¢ - f)d‘tr
0

and the maximum output to an input constrained by
equation (9) is

‘ . 2
zf"’(r)=p,[_[h“’(:-r)h“" (t-f)df] - (%)

0

Through a simple substitution, equation (15) is
rewritten

1
2

if"’(r)=p,[jh""(r)h"‘"(r)d{ (16)
0

Next consider the disturbance model that bounds the
instantaneous energy of the input, equation (6).
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Following a derivation similar to that for the IEB
model, the maximum response of the k' output is
obtained by using the Cauchy-Schwarz Inequality on
the integrand of equation (8),

1
b (¢ - t)w(t)dr [u""(: — oh® (= r)dz]3 x

(n
[ (2)w( r)dr]%
The maximum occurs when
w(t)= th(*)r (t-1), (18)
where ¥ must satisfy
728 (e = h® (¢ = 1) = p2 (7). (19)

Combining equations (18) and (19) yields the
maximizing input for the LEB convex model,

w,(7)= pL(‘t)h(k)r(t-T) - (20)

[h"‘)(r - (¢ - 4:)]E

The maximum output is
t ; 1
790 = [pu (96— b (-9 ar. 2
0

The final disturbance model to be examined is the
Temporal Envelope Bound (TEB) model, which is
expressed by equation (7). For the jtb input, the
maximum response of the kK output is a function that
switches between the maximum and minimum
values, depending on the sign of the impulse
response,

— =fu, (%) if hy(s-7)>0
wn(r){=fr.,(f) if h:(t-t)<0' (22)

The j** column of h(®(¢) is denoted h/®(r). The
maximum response to uncertain inputs bounded by
equation (22) is

z;*’mi“ O (e ) o
j=l {0 (23)

+jh§"‘ (t-17) fu(r)dr}

0

The superscripts * and - indicate if the j** column of
h{¥(z) is positive or negative, respectively.

c Outimization A :
To Controller Design

Design of the optimal feedback control law is
expressed as a constrained optimization over all
feasible transfer matrices h(s),

min ¢(h)

. (24)

v;(h)<0,..., yy(h)<0
where ¢(h) is a cost function to be minimized and
v, (h), i =1to M, are design constraints.

The advantage of modeling the uncertain excitations
as deterministic functions is that the expressions for
the maximum response are all convex with respect to
h(?). If the cost function and all of the constraints of
equation (24) are convex, it is called a convex
controller design. Convex optimizations are by
nature easier to solve than general nonlinear
programming problems. If any solution to the
optimization exists (i.e., the constraints are not too
tight) the global minimum can be found to any
desired degree of accuracy. This eliminates the
choice of a stopping criterion and provides important
guarantees on the accuracy of the optimal solution.

As stated in equation (24), the controller design
problem is an infinite dimensional optimization.
This results from the fact that there are an infinite
number of transfer matrices that must be searched to
obtain the optimum. A general method of solving
these problems is to perform optimizations over
larger and larger finite dimensional subsets. For
convex controller designs, one method of doing this
is to introduce a Ritz approximation of the closed
loop transfer matrix. One such Ritz approximation is
motivated by the @ parameterization of all
stabilizing controllers (equation (3)),

N

H‘”’(s)=Pm(s)+Pn(s){inQ.«(s)}Pm(s)- (25)

The functions Q,(s) are arbitrarily chosen functions
and each x; is a real scalar number. Parameterizing
the solution with a Ritz approximation maintains the
convexity of the cost function and constraints.

Substitution of equation (25) into the optimization
reduces it to a search over a finite number of real
scalars. A critical feature of approximating the
solution via equation (25) is the convergence
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properties of the optimum. As the number of terms in
the series is increased, the solution of the finite
dimensional problem approaches the optimal value
of the infinite dimensional problem®. Often times, it
is possible to prove that at N -> o, the two solutions
are equivalent. In practice, only a finite number of
terms is required to get arbitrarily close to the
optimal value.

IWWDH' R Funct

The maximum response expressions and the Ritz
series are combined to create finite dimensional
approximations. Using the inverse Laplace transform
on the Ritz approximation yields

() = p‘*’(:)+2x.p‘;’(r). (26)

where p,(?) is the inverse transform of P.,(s) and
P.i(?) is the inverse transform of P_(s)Q;(s)P,,(s).

For convenience, the (N) notation has been dropped.
The following analysis is simplified by placing
equation (26) in vector notation,

b ®(2) = p (1) + xTPL)(1). 27N

The design variables x; have been placed in the
vector xe XY, and P_(r) e RY*™ at each time ».

For the finite set disturbance model, Wy, the
maximum output to the it disturbance is

W = m{cg’"(x)+ bl (t)x}, (28)
where,
# )= [ o e~ Dyw,(1)ae

b{¥(s) = jor‘:’(z- o, (t)dr

(29)

Introducing the Ritz approximation into equation
(16) reduces it to a quadratic expression in x,

1
y(0)= [c}")(t) +b{ ()x+xTAP (e )"]2 » (30)

where,

) =p, [ B (A (1)ae
b)) =p [ PR (R @b
AW =p, [ PO(PL (2)ae

In a similar manner, the LEB disturbance model can
also be expressed as a quadratic expression in x,
; 1
78(e) = [A[”(:)n‘[’ (t)x+xTA(,_")(t)x]2 . (32)

where,

0= pu ()t~ " (¢ - e
b{¥(r)= Ip,_(t)l’"‘)(t-t)p("’ (t-1)dr. (33)
AD0)= [ pu(PL (e - W (s~ 7)dr

The Ritz approximation is also introduced into the
TEB disturbance model,

2®(r) = 2 J‘[p(t) — 1)+ xTp(e - t)] fu(t)de

j [P - )+ x84 - )] fl,-<r)dr}
34

where ( );denotes the j** column of ( ) and the
superscripts + and - denote when the bracketed
expression is positive or negative, respectively.

E le: Disturt Reiecti
In A Flexibie Structure

The optimization techniques developed in this paper
are applied to the model of an unconstrained flexible
structure. The model for the structure consists of two
rigid body poles and a low frequency flexible mode.
A block diagram of the open loop system is shown in

Figure 3.
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Figure 3: Open loop block diagram of an unconstrained structure with one flexible mode.

The control design is accomplished in two stages.
First, Linear Quadratic Gaussian Synthesis is used to
obtain an optimal estimated state feedback
controller. Next, a series of convex optimizations is
performed to minimize outputs to different sets of
exogenous inputs. The different sets of uncertain
inputs represent varying levels of previous knowledge
about the disturbance set. The optimizations are
used to study the performance trade-offs that exist in
the design of the optimal control laws.

Linear Ouadratic Gaussian Synthesi

An optimal state estimate feedback controller is
designed using Linear Quadratic Gaussian synthesis.
Using optimization techniques developed by Boyd
and BarrattS, a curve is obtained that represents the
trade-off between performance and control effort for

LQG control {Figure 4].

ot \
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Figure 4: Trade-off curve for LQG control of the
flexible structure model.

Each point along the curve is the solution of the
convex optimization

1
min (A 9Ly + 12000, )7. (35)
S. 1. 12 = l—ll

where

1
Ppert =(ﬂ”21ﬂ: *‘IszE;)z
(36)

-
by =(HH1||§ .,,IleI;)z

"H,-,-IL is the 2-norm of the closed loop transfer

function between z; and w;. For each value of 4,
between 0 and 1, an LQG controller is obtained
through the solution of two Ricatti equations!. Points
along the curve are LQG solutions for different
values of 4.

The trade-off curve for LQG synthesis reveals
information about the achievable performance for
A, minimization. The region 'above' the trade-off
curve represents values of ¢, and ¢ that are
achievable by some control law K(s). Points ‘below’
the curve cannot by achieved by any linear control
law. For the example problem, Figure 4 illustrates
that control laws that make ¢,y greater than 5 yield
very little decrease in ¢,z

Optimal Distur Reiecti

Once an LQG controller is designed, a set of convex
optimizations is performed to augment the estimated
state feedback. Three separate optimizations are




performed, each with a different model of the
excitation.

If we introduce the following switching function,

1 0ty
swin, t)=4{-1 f,<tsn,, 37N
0 <t

then the first two excitation models are defined as,

Excitation Model 1:

wi(t) = {sw(lO,ZO)} (38)
)

Excitation Model 2:

(o) = {sw(lO,ZO)}
0

wy(1) = {’"’(5’ 20)} (39)
)

w () = {sw(lg,ZO)}

The third model for the excitation is a TEB
disturbance model,

Excitation Model 3:

-1Sw(1)sS1 0<¢520
wy(t)=0 05520
w(1)=0 20<:¢
wy(t)=0 20<:

w(t) = (40)

The three excitation models represent decreasing
levels of knowledge about the input. For the first
model, the input is known. In the second model, the
input is one of three functions, each with a different
switching time. The third model contains any input
bounded by +1 over 0 to 20 seconds.

The performance objective and constraints are
defined in terms of 2-norms and maximum response
functions. Constraints on the H, norm of the closed
loop transfer matrix are chosen based on the trade-off
curve for LQG synthesis. The H; norm is obtained by
letting ¢ -> o in equation (30) and setting p;, = 1.
Thus, the 2-norm is a quadratic expression in x.

The performance objectives and constraints for the
three optimizations are

Optimization |:

min 72
St 2,(') <30

(11 +|H22|§)% <22

1
(1Al +1H:E)? <50

Optimization 2:

min max{ Z,m. i%z). Z;z)}
st. max(ZV, 2V, V) <30

1
(IHZIli "’l”nl:)z <22
1
(1l +1#aE ) <50
Optimization 3:

min  7\2(20)
st z"(20) <3.0

i
(1l +1H2E ) <22

1
(1.1 + 182 E )2 <50

The optimization is allowed to trade-off the 2-norm
of the response and the peak value of the control
effort for a decrease in the peak value of z;. For the
LQG controller with ¢,y = 5.0, the value of ¢,.,s
=].81. The optimizations allow this value to
increase 2.2, and it also lets the peak value of the
control effort increase to 3.0.

The optimizations are performed using a constrained
ellipsoid algorithm written in MATLAB”- The time
responses are discretized over the interval 0 to 50
seconds with 2000 points. The Q parameterization is
chosen to be

Qi(s) = (ﬁ)‘ 41)

Reasons for choosing such fuactions are discussed in
Polak and Sacludean®. The optimizations are




initialized at the LQG solution, x =0, and the
termination criterion is set at 0.01. This guarantees
that the solution is within 0.01 of the optimal value.

Discussion Of The Qosimization Resul

All three optimizations are performed with between 2
and 20 Q functions. The convergence histories
indicate that little change in the optimal solution
occurs after approximately 16 Q functions {Figure 5].
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Figure S5: Convergence histories for the three
optimizations. Top plot is the performance objective,
bottom plot is the constraint on the peak value of ZV.

Quantitative results of the three optimizations are
listed in Table 1. They illustrate that the achievable
performance is strongly coupled to the size the
disturbance model. For the first optimization, the
excitation is known, resulting in a control law that
can achieve a significant reduction in the peak value
of 22, Increasing the size of the disturbance model
to three functions decreases the amount of
performance reduction the optimization achieves.
For the final disturbance set, the peak value at the

optimum is much higher since the assumed model for
the excitation is more conservative.

The convex optimizations offer insight into the
design trade-offs. In the case of the first two
disturbance models. the constraint on the peak value
of the control effort is not necessary. Neither
optimization reaches the constraint value at the
solution. Also, control laws that are excellent for
one disturbance set might be poor for another. In this
example, the optimal controller for the TEB
disturbance model actually increases the peak
response to the excitations contained within set |
and set 2.

For all three optimizations, the constraints on the Ha
norm of the performance and control effort are
limiting factors in the design. All of the optimal
solutions lie on the 2-norm constraints of z; and 25

E Domain Ct istics Of The Optimal
Solutions

It is instructive to examine the frequency response
characteristics of the closed loop systems obtained
via convex optimization. Many modern and
classical design procedures involve shaping the
frequency response to obtain the desired results in
the time domain. In this paper, time domain
information regarding the input is included in the
optimization, eliminating the need to shape the
frequency response.

The closed loop transfer functions for the optimal
desig.s are compared to the LQG solution in Figure
6. Since the optimizations are minimizing the peak
response of ; to uncertain inputs at w,;, the only
significant change occurs in H;,. The optimal
solution is notching the frequency response to
achieve reductions in the peak value of the output.
The remaining closed loop transfer functions change
very little, only enough to satisfy the constraints.

It is probable that a skilled designer would be able to
shape the frequency response to satisfy the
constraints. One advantage of the convex
optimization approach is that there is no need to
translate the time domain constraints into the
frequency domain. The frequency response is
manipulated automatically, in such a way that
optimal performance is achieved while
simultaneously satisfying all constraints.

Numerical Limitati

Convex optimization offers very structured methods
to examine design trade-offs, but relies heavily on
numerical procedures. This strong dependence on




numerical solution introduces some limitations in the
optimal design of control laws. For the low order
example studied in this work, the computation time
is not excessive. The most demanding optimizations
only take approximately 15 minutes on a Sun
SPARC10 workstation. For higher order problems

with more constraints, the large number of objective
and constraint evaluations (on the order of 1200 to
1500) might cause difficulties. For this reason, it is
very important to make the objective and constraint
evaluations as efficient as possible.

Table 1: Comparison of convex optimization results.
*

Performance Control Effort
20 # #F Fe 20 # #{ #o)
LQG 252 2.80 2.28 3.56 1.58 1.86 1.64 292
Opt 1 1.34 2.01 191 4.36 2.12 2.05 2.05 3.67
Opt?2 1.38 1.38 1.38 3385 2.01 2.01 2.16 3.90
Opt3 2.67 2.68 2.65 2.87 1.61 1.72 1.57 3.00
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Figure 6: Closed loop transfer functions for the LQG solution (dotted), and the solution for optimization 3 (solid).

A more subtle numerical limitation involves the
evaluation of the maximum response functions for
the IEB, LEB, and TEB disturbance models. In

certain cases, it is straightforward to show that the
maximum response monotonically increases with
time. Therefore, constraining the maximum response
at time T automatically constrains the response for ¢




< T. There is no such guarantee for ¢ > T, though.
For the flexible structure example, bounding the
maximum response at ¢ = 20 does not guarantee that
the optimal value is not exceeded at future time. A
more appropriate objective might be

min m{z‘,”(:)} 42)
over the time interval 0 to 50 seconds.
Unfortunately, this requires many more

computations, and would increase the time of the
optimization considerably. Future work on this topic
might involve finding closed-form solutions for the
maximum response functions.

Concluding Remarks

This paper illustrates one method of including time
domain information in feedback control design. By
modeling uncertain excitations deterministically,
optimal control laws are obtained efficiently via
convex optimization. This allows for straightforward
examination of the trade-offs that exist between
achievable performance and the design constraints.

In the presence of uncertain inputs, the achievable
performance is a function of the model chosen to
represent the disturbances. As one would expect,
more conservative input models yield more
conservative control laws. One method of reducing
the conservativeness of a control law might be to
investigate the allowable inputs and include any
available time domain information in the optimal
feedback design.
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ABSTRACT
The performance of a single link. very flexible manipulator
using two different position control systems was siudied. A
standard PD feedback control was considered along with PD plus
position times velocity feedback. An analvticai model of the
plant was identified and computer simulations using the (wo
controtlers were performed. The results clearly showed a
decrease in control effort for the system using nonlinear control
when compared to a similar response for the system using PD
control. Experimental resuits on a slewing beam system verified
this result. The system using the proposed nonlinear feedback
I control required significantly less energy to complete the same
maneuver as the system using the standard PD feedback control.
Other measures of performance (e.g. rise time, settling time.
overshoot) were slightly improved when the nonlinear feedback
l was added to the controller.

INTRODUCTION
I Slewing metion, the rotation of a structure or manipulator
about an axis, forms the basis for many robot and satellite
maneuvers. The work presented here concems the single axis
slew maneuver of a flexible structure. Numerous researchers
'have modeled slewing structures and designed linear control
schemes for them. The slewing flexible structure is typically
approximated as a rigid hub connected to a flexible appendage.
Cannon and Schmitz (1984) modeled and performed experiments
'with a single link, very flexible beam. They considered the
noncolocated control problem, where the tip position was sensed
and controlled from an actuator located at the other end of the
beam. Similarly, Juang, Horta and Robertshaw (1986)
experimented with a slewing beam and a solar panel. They
compared the experimental results with analytical predictions and
found good agreement. Other researchers investigated the
interaction between the actuator and structure of slewing
Istrucmres. Garcia (1989) modeled a siewing beam and
considered the effect which different gear ratios between the
motor and the beam had on the system. Sah (1990) performed
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similar work. providing a method to select the parameters of a
slewing system through a nondimensional analysis. Finally.
Garcia and Inman (1991) considered the effect of integrated
sensing and actuation along a slewing beam to control the
flexibility of the structure.

Why consider nonlinear control? The strongest argument for
using nonlinear control is that it can significantly improve the
performance over linear control schemes. This can be shown in
simulations. where the step response rise time, sestling time and
overshoot are significantly smaller than the response when linear
control is used. Lewis (1953) showed the response of a second
order system can be improved by constructing a variable
damping. He used position times velocity feedback to eliminate
overshoot and improve the settling time of a positional
servomechanism. More recently, Castelazo and Lee (1990)
proposed using the same type of feedback to improve the
response of a slewing beam system. They considered a nonlinear
feedback. where state positions and state velocities were
multiplied. A heuristic method was proposed to tune the
nonlinear feedback gains and the resulting performance was
better than the performance provided by an optimal linear
controller. They provided simulation results for a slewing beam
to verify the method. Others, such as Kuo and Wang (1990).
have proposed using nonlinear controllers to improve the
robustness of a more complicated two link manipulator.

Initially, the purpose of this work was to experimentally verify
the simulation results found by Castelazo and Lee. However. to
insure global stability, their proposed feedback required a simpie
modification. Also, full state feedback is difficuit to implement
and as a result, proportional plus derivative feedback controi.
which lends itself well to experimentation, was chosen for this
purpose. Angular position and angular velocity are easily
measured on the experimental apparatus. The nonlinear feedback
consisted of the angular position times the angular velocity and
the objective was to show that the system using nonlinear
feedback provided better results than the system using the best
available linear feedback.
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THEORY AND MODELING t
The experimental apparatus consisted of an armature controiled Iy = Ipr'dx
DC motor connected to a very flexibie aluminum beam, Figure 1. 0
The slewing equations of motion [Garcia (1989)] can be
developed using Hamilton's principle and pertorming simpie I =N
mechanical and circuit analyses of the motor assembiy. The A
equations of motion are written as
L
Mg+Dq+Kq=8,e, H l,.=£pr¢,-dx

where, using the definition
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Also, ¢;(x) are the mode shapes of the inertia-free beam, g, (¢)
are the generalized coordinates. N, is the gear ratio between the
motor and the beam, p is the beam density, A is the beam cross
sectional area, x is measured along the beam, ¢, is the equivalent
viscous damping in the model, /_is the motor inertia. and X,.

K, and R, are motor parameters.

A pole zero model of the slewing beam system of Figure | was
also identified. A Fourier analyzer manufactured by Tektronix.
Inc. (model # 2630) was used to collect data for the experimental
model. The nawral frequencies and damping ratios of the poie
zero model are given in Table 1 below. This model was used in
the simulations to be presented since it was obtained from test
data of the system used in the experiments.

OUTPUT FEEDBACK
Simulations will be presented where the identified pole
zero model of the slewing beam (Table 1) was used as the system
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TABLE 1 EXPERIMENTAL NATURAL FREQUENCIES
AND DAMPING RATIOS
modey 1 @, (HD) Cie(®

1 5.0 1.3

2 15.4 1.4

3 20.8 1.7

3 51.8 1.1

s 79.6 1.1

plant. Using a potentiometer and a tachometer mounted at the
slewing axis and an accelerometer mounted at the beam tip. this
single input multiple output model of the slewing beam system
was idenafied. In the experimental slewing beam system. oniv
angular position and angular velocity at the slewing axis were
made available to the controller. For this reason. a proportionai
plus derivative (PD) controller was studied. A block diagram of
the closed loop system is shown in Figure 2.

The dashed box indicates the operations performed in the
analog computer in the experiments. [n Figure 2. the motor
armature voltage, e,, can be represented as

ea = E’(e"f - 91-)'- lv‘k.dér had &vsk-,lller|ér

()
=k, (8, -®T(0)q)~k,07(0)g - &, |[®7(0)qj®T(0)q

There are no gears present in the system. The controller was
designed to retumn the system from an initial angular displacement
of 30° to equilibrium in the shortest time possible. The best
response was defined as the response where the tip position
settled in the shortest time without exceeding the constraints of
the motor and controller. The motor was limited to a maximum
of 30 V and 15 A and the controller saturated at 10 V.

Setting k,, =0, a simple PD control system is obtained. In
search of the ideal response, a tradeoff exists where the
magnitudes of the feedback gains are limited by the constraints of
the system. Increasing the proportional gain beyond a certain
value caused the motor and controliler 1o saturate. Also. beyond
certain values of k, the settling time of the beam tip increased.
which was also undesirable.

The nonlinear feedback consists of the absolute vaiue of the
angular position at the slewing axis times the angular velocity at
the slewing axis adjusted by a feedback gain. The variable
(nonlinear) damping proposed here provides very little additional
damping at the beginning of the control maneuver. As the target
position is approached, the damping increases. If the best
response of the linear feedback system exhibited overshoot, it
could be decreased or eliminated by increasing the nonlinear
feedback gain, k. In this case, increasing k,, caused the settling
time to decrease initially, then increase as k,, became large and
the system exhibited an overdamped response. If the system
using linear feedback showed a critically damped response, then
increasing k,, increased the settling time. In this case, when k,,

I
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FIGURE 2 CLOSED LOOP PD PLUS NONLINEAR
FEEDBACK CONTROL SYSTEM

was small. there was no visible effect on the time response of the
beam tip, however, the control effort decreased. In other words.
it was possible to obtain the same time response using less energy
when the nonlinear feedback was added to the control system.

The best simulation results are given below. First, a response
with the fastest settling time which remained within the physical
constraints of the system was obtained using PD control. Then,
noniinear feedback was added to the system until the most
desirable effects were obtained. The angular position at the
slewing axis versus time is shown in Figure 3. The acceleration
of the beam tip versus time is shown in Figure 4. The dotted line
represents the PD control and the solid line is the response of the
PD plus nonlinear control. The addition of the nonlinear
feedback eliminated the overshoot and reduced the magnitude of
the acceleration at the beam tip. The settling time did not change.
however the improvements in the overshoot and acceleration
make the result using the nonlinear feedback control more
favorable.

Figure 5 is a plot of the instantaneous power versus time where
the upper curve is for the linear feedback and the lower curve is
the result using nonlinear feedback. Integrating, the energy
required to execute the control maneuvers was obtained and
tabulated in Table 2. A significant savings in energy resuited
through the addition of a simple nonlinear feedback to the
standard PD controller. An improved response was obtained and
30.6% less energy was used in the nonlinear feedback case.

The simulations presented above used a model obtained from
dara of the experimental system and therefore, they provide the
most optimistic result that the simulated observations can be
implemented on a real system.

EXPERIMENTAL RESULTS

Simulations provide valuable information concerning the
dynamics of systems before any experiments are performed. The
experimental results are presented here. First, a PD controller
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was constructed for the slewing beam and an experiment was
performed. Then. the nonlinear feedback was added to the
controller and another experiment was performed.

It is important 10 note that this study was initially conducted to
verify through experimentation that the proposed nonlinear
feedback control could be used to improve the time responses of
the slewing beam system. However, within the physical
constraints of the system, the improvements in the time responses
were small. A natural extension of this investigation was to
determine the cost of the change in performance. This is where
more significant results were found. The purpose now is to show
that it is possible to reduce the energy requirements of this system
with no loss in performance. We have found through simulations
and through experimentation that even when there is no visual
improvement in the performance as measured with respect o
settling time or rise time or overshoot. there is a significant
improvement in energy consumption when the proposed
nonlinear control is used in addition to the linear control.

The controllers were implemented in the same manner as in the
simulations. The beam tip acceleration was measured and used as
an indicator of the closed loop perfortnance. An EAI 2000 analog
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TABLE 2 TOTAL ENERGY INPUT TO THE
MQTOR FOR THE SIMULATED 30° SLEWING
MANEUVER USING THE IDENTIFIED PLANT MODEL

Linear 174
Nonlinear 12.1)
% reduction 30.6 %

computer manufactured by Electronic Associates. Inc. was used
to implement the controllers. A block diagram of the closed loop
system was given in Figure 2.

The controller gains were adjusted until the fastest sentling time
was obtained. The time responses are shown below for the PD
controlled slewing beam. The beam is given an angular
displacement of 30° and slewed to 0°. A plot of angular position
versus time is shown in Figure 6, the beam tip acceleration versus
time is shown in Figure 7.

These experimental responses are comparable to the simulated
responses. [n general, the experimental result shows less
damping than the simulation. The overshoot is larger and the
settling time is also larger than the simulation predicted. The
reason for this is that the derivative gain used was smaller than
that used in the simulations. A smalier gain was required since
higher gains degradzd the performance and caused the ampiifier
to saturate. The settling times of the angular position at the
slewing axis and of the beam tip are found in Figures 6 and 7 and
they were approximately 2 seconds each.

The time responses for the system using the nonlinear feedback
are also shown. Angular position at the slewing axis versus time
is plotted in Figure 8, Figure 9 shows a plot of the beam tip
acceleration versus time. Figures 8 and 9 show that the settling
times of the angular position and tip acceleration are
approximately 2 seconds.

The instantaneous power versus time curves for the system
using the linear and nonlinear feedback controllers is given in
Figure 10. The upper curve is the result obtained from the PD
controlled system and the lower curve represents the nonlinear
feedback case. The instantaneous power versus time curve was
obtained by multiplying the time histories of the motor voltage
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and current together. Integrating under the power curve gives the
total energy input to the motor for the control maneuver. For the
PD controlled system, the energy input was 16.3 J. The total
energy input to the motor for the nonlinear feedback system was
13.71.

When the PD feedback gains were lowered, an underdamped
response was obtained which remained well below the system
constraints. As a result of the lower PD gains, the nonlinear
feedback gain could be set to larger values and significant
improvements in overshoot and settling time were obtained.
Thus, it was verified that the proposed nonlinear feedback control
could be used to improve the closed loop performance of the
iinear system. The plots are not included here since the objective
of this work was to find the best experimental PD controller, then
add as much nonlinear feedback as possible (before saturating the
amplifier) and compare the energy requirements of each system.

Consider the experimental time responses shown above. The
angular position and beam tip acceleration settled in 2 seconds for
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both the linear and nonlinear control systems implemented.

There was a small decrease in overshoot in the angular position

for the nonlinear feedback result, but this is not readily apparent

in the figures shown. In general, the angular position plot shows

an underdamped response for both the linear and nonlinear
feedback results. Considering the time responses of the beam up
acceleration, the nonlinear feedback result shows a small decrease
in magnitude of the peak accelerations. This is the same result
noticed in the simulations.

Finally. coasider the power plot shown in Figure 10,

From the figure , it appears that the system using nonlinear
feedback required less energy than the system using the linear
feedback alone. The peak magnitude of the instantaneous power
input to the system decreased by approximately 10%. Integrating
under the instantaneous power versus time curves gives the total
energy input to the motor during the control maneuver. The
resuits are shown in Table 3. A 15.6 % decrease in energy
resulted for the system using nonlinear control than for the system
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using linear control, while the performance was virtually the same
for both control methods. Therefore. it is possible to add
nonlinear feedback of the form proposed here to a linearly
controlied system and save energy, while obtaining the same
performance in every other respect.

CONCLUSIONS

Initially. the purpose of this work was to experimentally verify
that a specific nonlinear feedback control could be used to
improve the time response of a closed loop system using linear
control. A slewing beam system was chosen to implement the
nonlinear control.

Simulation results showed only small improvements in the time
responses (seuling time and overshoot) for the nonlinear system
within the system constraints. However, it was noticed that the
control effort required by the system using nonlinear control was
less than that required by the system using the linear control. The
objective then changed to experimentally verify that this type of
nonlinear control used less energy than the linear control when all
other measures of performance were virtually unchanged.

Experiments proved that the addition of the proposed nonlinear
feedback improved the performance by lowering the energy
required to execute the slewing maneuver. The best performance
for the linear control was an underdamped response. Adding the
nonlinear feedback showed no significant improvement in
performance. However. when the control efforts were compared,
the nonlinearly controlled system required much less energy than
the system using linear control. The conclusion reached was that
the nonlinear feedback control proposed here can significantly
save energy, even when no other change in performance is
perceived.
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Abstract

A robust vibration suppression design involving the use of H,, optimal control theory is studied
for a complex flexible structure. The digital control architecture involves non-colocated feedback
utilizing active piezoceramic actuators and position sensor data. The modal properties of the mult-
input-mult-output structure are first determined from experimental data in order to obtain an identified
state-space model. This model forms the basis for the H, vibration suppression design. Performance
specifications are developed which obtain adequate damping in the structure while maintaining controller
integrity without the destabilization of higher modes. A controller optimized for these H,, performance
specifications is implemented on the actual test structure. Experimental structural perturbations are also
examined in order to determine the robustness of the vibration suppression design. The experimental
study indicates that the H,, design substantially increases damping in the targeted frequency region and

conforms to predicted analytical simulations.
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Introduction

Space structures are generally very flexible and have many degrees of freedom in both the bending
and torsional modes. The problem of controlling these structures has been investigated vigorously in
the past (see, e.g. [1-3]), by utilizing both active and passive damping control techniques. Previous
work has demonstrated the potential of using active strut elements to improve the vibrational response
of a structure*. The application of these active elements to a non-colocated structural control problem

can enhance system performance while tailoring the input/output properties of the structure.

The H, control strategy, as compared to classical control techniques, provides new techniques and
perspectives in designing control systems. This is accomplished by shaping the frequency response
characteristics of a plant according to pre-specified performance specifications in the form of weighting
functions. The H. design process is chosen since: (1) it supplies robust stability to model and sensor
uncertainties; (2) it achieves performance requirements efficiently; (3) it handles both disturbance and
controller saturation problems easily; and (4) it works not only on simple single-input-single-output
(SISO) systems but also on multi-input-multi-output (MIMO) systems>. Therefore, frequency response

criteria can easily be shaped to desired specifications.

In recent years the implementation of robust stabilization and control based on H,, control theory
has been investigated for different structures (see, e.g. [6—7]). However, most of these studies are limited
to analytical simulations. A common procedure first involves the generation of a finite element model
for the structure. Colocated rate feedback is often implemented in order to damp certain modes and to
facilitate a reduced order model used in the H, design process. However, experimental implementation
of colocated velocity feedback can lead to stability problems if a priori precautions of actuator dynamics
are not taken®*®. In particular, the control of low frequency modes could destabilize the intermediate
and higher modes. Also, the closed-loop response characteristics are sensitive to the plant model used
in the H,, design. If significant error exists between the nominal model and the actual system, then

experimental results could drastically differ from analytical simulations.

"~




Recent experimental verification of applying an Hy, design for active vibration suppression has
shown more practical solutions to this control problem. Fanson et al> have demonstrated thar a non-
colocated robust control approach can provide satisfactory performance characteristics in structures with
and without passive damping. However. differences exist between experimental results and theoretcal
responses. due to significant error between the nominal (finite element) model and the actual structure.
Stroughton and Voth!” have shown that a colocated robust control design for a highly damped structure
could be developed. This design is insensitive to fairly large errors in specific structural modes.
However. the controller is of high order which imposes extensive computational burden. The intent
of this paper is to develop a low order 7 controller which provides structural damping in a flexibie
structure using non-colocated sensors and actuators. Non-colocated control of a flexible structure is

difficult to achieve since low damping and non-minimum phase characteristics are inherent in the system.

In recent years, several time domain techniques have become useful for structural testing (see,
e.g. [11-13]). In most circumstances. time domain identification aigorithms have advantages over
conventional frequency domain algorithms. including: higher testing speed, better resolution of modes
in high modal density bandwidths. and lower cost of instrumentation!*. Therefore, time domain
techniques for flexible structure realization and identification are useful in determining state-space
models, which are required for the H, control design. In most circumstances, the identification
of SISO models from experimental data can easily be obtained. However, since transmission zeros
impose strict mathematical constraints on system matrices, minimal realizations of MIMO systems are
usually difficult to obtain experimentally. Possible sources of error include: sensor and instrumentation
noise, slight nonlinearities inherent in the structure, and/or background vibration. Therefore, for system
identification of flexible structures, multiple experiments are usually performed in order to improve

mathematical models. However, this requires extensive computational time and effort.

The identification algorithm used in this paper identifies accurate (near minimal) realizations of a

structure from only une set of experimental data. This algorithm combines an optimal state estimation




routine, known as the Minimum Model Error (MME) estimator'>-!6, with the Eigensystem Realization
Algoxithm” (ERA) in order to provide robust fearures for MIMO identification. In several previous
studies, this algorithm has been successfully applied to numerous applications, including; e.g.. nonlinear

estimation'®, and robust realization/identification of mode shapes in damped structures!®-=0.

The u-synthesis approach! utilizes robust performance techniques in order to alleviate deviations in
the nominal model. However. this methodology usually results in high order controllers if the nominal
model has a large number of uncertainties. Also. the choice of uncertainty weights requires some
level of iteration and intuition in order to achieve the required performance characteristics. The design
procedure in this paper involves the determination of an accurately identified model from experimental

data, so that the use of uncertainty weighting can be minimized.

Robustness, with respect to parameter and structural changes, is an important aspect to any control
design. The use of multiplicative and additive uncertainty singular value relationships can help determine
which modes are sensitive to structural variations®. Of partcular interest is the suppression (damping)
of lower modes without the destabilization of high frequency modes. The aid of accurate model
representations, using the MME/ERA identification algorithm, can lead to a clearer coherence between
experimental results and theoretcal predictions. Therefore, model and structural uncertainties can be

studied in order to test the robustess and sensitivity of the H, controller on the closed-loop system.

The organization of this paper proceeds as follows. First, a brief overview of the H,, contol theory
and design methodology is summarized. Then, the experimental implementation and system hardware
for the structure are shown. The identified model is then realized into state-space form by using
the combined MME/ERA identification algorithm. This model is incorporated with A performance
specifications for vibration suppression and controller frequency-response shaping. Two designs are
presented. One design stresses active damping in the first two modes of the structure, while the other
design stresses robust stability over a higher system bandwidth. Each of these control designs are

experimental implemented and results are compared to theoretical computer simulations.
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H_.Overview

This section gives a brief overview of the fundamental theory of H,, control design. The A,
norm of a transfer function matrix represents the maximum energy in the output signal from the transfer
function due to any input of unit energy. Therefore, minimizing the H,, norm of a transfer function is

equivalent to minimizing the energv in the output signal due to the inputs.

In order to demonstrate the fundamental aspects of H, control theory, consider a system with
controller F(s) and plant G{s). The sensitivity function ([ — FG)™" is defined as the transfer function
from the ourtput disturbance D(s) to the plant output ¥°(s). Then, if a stabilizing controller (F) is
chosen such that (/- FG )7 'x 1s mirumized. the energy of the plant output due to a disturbance
of bounded energy is minimized. Similarly. the output controller function F(I = FG)™! is the transfer
function from the reference input R(s) to the conwoller output U'(s). Minimizing i;F (I - FG)™*
constrains controller output energy and also maximizes allowable additive plant uncertainty. Finally,
the complementary sensitivity function FG{[ — FG )_1 is the transfer function from the reference input
to the plant output. Minimizing FG([ — FG)™*" x tailors plant output energy to input reference
commands. The H,, design process considers these closed-loop performances to pre-specified weighting

functons, denoted as vI17%(jw), Wa(yw), and W3(jw). The H, optimization problem is to find a

stabilizing controller F(s) that minimizes:

v (I = FG)™! !l
WoF(I+FG)™! {

W3FG(I = FG)™ i

(1)

!
|
I
-

Equation (1) also shapes the frequency loop transfer function L(s) = G(s)F(s) by penalizing the
sensitivity function to reject plant disturbances, and high frequency L(s) by penalizing the comple-
mentary sensitivity to cope with model uncertainties, while maintaining controller output to desired

specifications. The solution of the H control problem involves an iteration on the v term of the




|

specified disturbance weighting function. As v is increased the sensitivity function (5(s)) decreases,

while the: complementary sensitivity function ((/ — S)) approaches the IV, weighting function.

H . Design with Active Damping

The mixed sensitivity approach*- in Equation (1) shows a clear trade-off between performance and
robustness of a multi-variable system. However. this methodology does not enable a practical design
approach for active damping, since plant dynamics are usually canceled with compensator dynamics.
This section expands upon the fundamental H control formulation in order to provide a means of
incorporating active damping into a structure with inherently low structural damping ratios (well below

0.50% critical).

Consider the block diagram of a MIMO plant in Figure 1. Let the MIMO plant (G(s)) be partitioned

into “disturbance” (G,(s)) and “plant/actuator” (G3(s)) transfer. functions, i.e.:

Y'(s) = G1(8) U1a(s) + Ga(s) Ua(s) (2)

The partitioned transfer functions have ideally the same characteristic polynomial, and differ only in
numerator dynamics. The inputs in Figure 1 are: U'14(s), any disturbance input into the structure (non-
colocated with the acruator: and Uy(s), a fictitious input used to simulate the sensor uncertainty. The

“augmented” plant with control compensator is shown in Figure 2.

Figure 1 Multi-Input-Multi-Output Block Diagram

Figure 2 Augmented Closed-Loop System
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The open-loop transfer function matrix of the augmented plant is:

(y1e ] [W:G: WY -G, ]
. [ Ula ]
Y1b 0 0 . W
4 . ugp
Yie ] = & 0 i ”362 (3)
—- S . o
[ uy
Lw] LG I -G

where u» and y, are controller output and input. respectively. The sensitivity function berween the

disturbance input and the plant output now becomes:

L __G
ula—I—FG'_g

4
Therefore. active damping can be accomplished. since pole locations of the closed-loop transfer function
in Equation (4) are shifted by the controller (£) and plant/actuator transfer functons. From Figure 2.
the characteristics of the weighting function 117 (s) determines the amount of damping and frequency
response dynamics of the closed-loop systems. The complementary sensitivity (sensor uncertainty)
function and controller/limiter function remain unchanged from the previous section. Also, once the
augmented plant in Equaton (3) is formed, numerical algorithms for the computation of the optimal
controller can be utilized. This controller solution is determined by the two-Riccati algorithm=> using

the Robust Control Toolbox>* for Matlab.

Experimental Hardware

A clamped frame serves as a testbed for the experimental H, control implementation. The structure
consists of 39 elements connected at 18 nodes. All but two of the structural members are made from
thin-walled circular aluminum tubing with an outer diameter of 0.25" and a wall thickness of 0.05 .

Each member is pinned and bolted into the nodes to eliminate looseness in the jo' ~ts. The frame

7
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is configured in a planar fashion so that the only significant deformation occurs perpendicular to the

structure (see Figure 3).
Figure 3 Flexible Frame Testbed

Two of the structural members are flat aluminum bars layered with piezoceramics. Either of these
struts can excite the frame since a voltage applied across the piezoceramics produces a moment on
the frame. The strut on the bottom of the frame has four ceramics glued to it and serves as the
control actuator. The other flat strut is configured with the same number of piezoceramics and acts as a
disturbance source. Each of these active members has a thickness of 0.25 and a width of 1.0625". The
piezoceramics are Model G-1195 from Piezo Electric Products with dimensions 2.5" x 0.75" x 0.01".

The sensor is a Philtec (model 88NE3) optical displacement sensor placed near node 18 at the
free end of the frame. This sensor is non-colocated with both the control actuator and the disturbance
source. Frequency analysis and data acquisition are performed using a Tektronix 2630 Fourier Analyzer.
Control laws are implemented on an Optima 3 digital controller, sampling at a rate of S00 Hz. This
sampling rate allows the maximum allowable performance for the H,, controller design. Finally, two

Hewlett Packard (model 6924A) amplifiers are used to magnify the control and disturbance signals.

Robust System Estimation and Identification

An accurate state-space model of the testbed is required in order to perform an opumal control
design. In this work, the Eigensystem Realization Algorithm!” (ERA) is combined with the Minimum
Model Error!® (MME) optimal estimator in order to update a finite element (nominal) model to conform
with experimental data. The finite element model provides a fairly accurate representation of the frame at
the lower modes, as shown in Figures 4 and 5. However, the higher modes are not modeled accurately.
This could cause the destabilization of higher modes when implementing the controller onto the actual

structure.
Figure 4 Experimental, Analytical, and Ideatified Magnitude Plots (1st input)

Figure § Experimental, Analytical. and Identified Magnitude Plots (2ad input)

&




The ERA method is effective for developing accurate state-space models when noise levels are low
in nature. However, difficulties arise when higher noise levels are present in the output measurements.
These effects can make a minimal state-space model of a MIMO system extremely difficuit to obtain,
since transmission zeros also constrain the realization. For the identification of the testbed the ERA iy
able to idennfy the natural frequencies and damping ratios fairly accurately using an average of three
different time histories. But. a near minimal MIMO realization of the testbed could not be obtained.
By combining the ERA with the MME estimator. which utilizes the minimal state-space MIMO finite

element model. improved modal identificanon is achieved with near minimal MIMO realizartions.

In this section. the MME algorithm is briefly reviewed for the case of linear time-variant state-
space models. A more detailed derivation of the algorithm may be found in Reference 15. The MME
algorithm assumes that the state estimates are given by a nominal (pre-specified) model and an un-

modeled error vector, shown as:

2(t) = Am(t) 2(t) = Bm(t) u(t) - d(¢)

3(t) = Cmit) 2(t) — Dm(t) u(t)

where A,(t), Bm(t), Cm(t), Dm(t) are time-variant nominal state matrices from the finite element
model, u(t) is a (p x 1) known forcing input, d(t) is an (n x 1) un-modeled (to-be-determined) model
error vector, £(t) is the (n x 1) state estimate vector, and y(t) is the (g x 1) estimated output. For
the remainder of this paper, the state-space (model) matrices are assumed time-variant, but are shown

without the tume argument (¢).

State-observable discrete time-domain measurements are assumed for Equation (5) in the following

form:

¥(te) = glz(te), te) + vi (6)
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where j(t;) is an (g x 1) measurement vector at time ¢, g; is an accurate model of the measurement
process, vj represents measurement noise, and m is the total number of measurement output sets.
The measurement noise process is assumed to be a zero-mean. Gaussian distributed process of known

covariance, R.

In the MME, the optimal state estimates are determined on the basis that the measurement-minus-
estimate error covariance matrix must match the measurement-minus-truth error covariance matrix. This

condition is referred to as the “covariance constraint”, approximated by:
.. . - - _ _.T
{ 30t = gen), G0t - g(t)i" } = R o

Therefore, the estimated measurements are required to fit the actual measurements with approximarely

the same error covariance as the actual measurements fit the truth.

A cost functional, consisting of the weighted sum square of the measurement-minus-estimate

residuals plus the weighted sum square of the model correction term, is next minimized:

J=3 { [G(t&) — g(t); TR T(te) — g(t); }
=1
(8

- / d(-)Twd(r)dr

where W} is a weight matrix determined by satisfying the covariance constraint. If the measurement
residual covariance is larger than R, then the measurement estimate is not close to the actual system
measurements. Therefore, 11” should be decreased in order to less penalize the model correction (d(¢)).
However, if the estimate covariance is to low, then ¥ should be increased in order to allow more

model correction. The model error corrects the finite element model in order to estimate the output
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using experimental measurements. Therefore, the model error term tends to update the finite element
model to conform to actual system responses.

The necessary conditions for the minimization of J, with respect to the model correction term d(t).

leads to the following Two-Point-Boundary-Value-Problem TPBVP!S:

2(t)

Am z(t) = Bm u(t) — d(t)

Aty = =D M)
1., (9)
4it) = —5 U7 A(L)

A7) = A7) = 2CTR™ g(te) - y(t)]

where A(t) is a vector of co-states (Lagrange multipliers). Also. the co-state equadon is updated at
each measurement interval. The boundary conditions are selected such that either A(t5) = 0 or z(to) is
specified for the initial time and either A( ‘t;) = Q or z(ts) is specified at the final time. The solution of

the TPBVP involves the determination of a linear Riccati equation and a linear differential equation .

Modified Eigensystem Realization Algorithm

The ERA method is a modal synthesis technique based on the concept of singular value decom-
position (see Reference 17 for more details). This procedure is capable of accurately identifying the
model properties of systems involving perfect or low-noise measurements. In this section the ERA is

expanded to include the state and output estimates given by the MME estimator.

Consider the discrete-time linear dynamic equation:

z(k = 1) = Az(k) = Bu(k)
(10
y(k) = C z(k) ~ Du(k)

where z is a (nx1) state vector, u is a (px 1) input vector, y is a (¢x1) output vector; and 4. B,

and C are (nxn), (nxp) and (gxn) constant matrices, respectively. A solution to Equation (10) is
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given by the Markov parameters from a unit impulse response:

Y(k)=CA*1B X(K) = A*'B (11)

The first step in the modified ERA is to form an (rxs) block Hankel matrix composed of the impulse
response data from the MME:

Zky . Z(k=m,_y)
H(k 1) = : : (1
Z(k—l,-_l) Z(k+l,_1+m,_1)

where r and s are arbitrary integers satisfying the inequalities rq > n and sp > n, and
Li(r=1,2...,r=1)and m; (j=1.2.....s—1) are arbitrary integers. The vector Z consists
of the estumated output and states given by the MME estimator, ie. z = [z g}T. The singular
value decomposition of A may be expressed as H = PD,Q. The ERA then forms the discrete-time,

reduced-order model realization of dimension n in the following form:

A= D;*PTH(1)Q.D;'?
B=Dy?QTE,

(1IN
¢ = ETP,D;/*

D = Y(0)

where P, and @, are formed from the first n columns of P and Q from the singular value decomposition,
and D, is the diagonal matrix of singular values. ET is [In,0], and ET is [I;,0], where I, and [, are
identity matrices of order p and ¢, respectively, and 0 is the zero matrix.

The modal damping ratios and damped natural frequencies are calculated by observing the real and
imaginafy parts of the eigenvalues, after a transformation from the z-plane to the s—plane is compieted!’.

The physical mode shapes of the system are determined using the realized eigenvectors (&) of the ERA
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state matrices. The physical mode shapes are given by ¥ = Cm ¢ . Physical state matrices can be

determined by using this mode shape matrix and the continuous eigenvalue matrix:

r¢_x_hlm 0 0 - =1
0 - 0
Am =2 A ¥Y B.=¥| ' _ y-lp (14)
L) (1 S—A.A"—A'-‘

where .\ is the continuous eigenvalue matnx. derived from a discrete to continuous eigenvalue transfor-
mation of the ERA state matrix. Therefore. an identification of system parameters is possible by using

the physical state matrices shown in Equation (14).

Combined Realization Algorithm

The combined MME/ERA algorithm enables the realization of a MIMO model in the presence of
significant model error. process noise. and measurement noise. In order to obtain impulse response
data, the test structure is excited using a random input with a bandwidth of 0~50 Hz. An inverse and
regular Fourier transformation is applied on this data to obtain the impulse response time histories. Also.
only one set of data for each input is taken for the identification. Therefore, extensive and repetitive
computatonal analysis is attenuated by using the combined MME/ERA method, since averaging of
multiple sets of data is not needed. This is an important aspect due to the difficulty of obtaining
multple sets of experimental data for orbiting space structures.

A block diagram illustrating the steps of the robust realization algorithm is shown in Figure 6.
First, the finite element model is used as the assumed model in the MME estimator. Next, the MME
estimation problem is solved, using the covariance constraint to determine an optimal weighting matrix.
The continuous estimated state histories produced from the MME are then re-sampled. Finally, these
estimated time histories are processed. in order to realize an accurate model of the system parameters,

using the modified version of the ERA. These steps may be repeated if necessary in order to further
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smooth the measurements and improve the identification process. However, accurate identification

results for this testbed required only one iteration through the MME estimation process.
Figure 6 Block Diagram of the Combined Realization Algorithm

The modal properties for the first eleven flexible modes of the frame are shown in Table 1. The
frame has all of the characteristics of a large flexible structure. It is modally dense, with eleven modes in
the first 60 Hz bandwidth. Also. inherent damping in the structure is low, with modes having damping
ratios less than 0.50%. The combined algorithm also identifies the frequency response characteristics

of the in-room fluorescent lighting at about 60 Hz.
Table 1 Poles of the Identified Model

Mode « (Hz) ¢ (%)
| 1.91 0.46
2 4.00 0.25
3 10.14 0.21
4 15.80 020
3 23.10 ' 0.13
6 29.67 0.17
7 37.06 0.13
8 48.36 045
9 49.00 0.36
10 54.55 0.25
11 56.08 0.27

lights 60.00 0.00

real 0.20

Magnitude Bode plots of the MME/ERA identfication results are compared to experimental fre-
quency response characteristics in Figures 4 and 5 (also shown is the finite element model frequency
plot). The MME/ERA produced a near minimal realization (24™ order) for the first eleven modes.
This MIMO model is extremely accurate with good agreement to experimental frequency response re-

sults. Also, the modal amplitude coherence!” (MAC) factors are substantially improved when using
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the combined MME/ERA algorithm. Therefore. this MIMO state-space model forms the basis for the

robust control design.

Robust Control Design

In this section the concepts and limitations for the selection of the proper weighting functions used
in the £ x design are presented. The appropriate selection of weighting functions over the desired
frequency range is not explicitly related to the performance objectives in a straightforward manner.

Numerous trial selections are usually required in order to obtain desired performance objectives.

The goal of the A design is to reshape the open-loop dynamics in order to provide vibration
suppression in the frequency region considered. Therefore. the sensitivity function in Equation (4) is
utilized to reshape these desired frequency characteristics and provide adequate damping to the structure.
The complementary sensitivity function is used as an uncertainty weight for the sensor output. After
careful consideration and numerous trials. a set of proper inverse weighting functions is obtained. The
inverse weighting functons for the sensitivity and complementary sensitivity functions are shown in
Figure 7. The Wl‘l funcdon weights the sensitivity function along the zero decibel region over a desired
frequency. Damping can be added to the system by decreasing the overall magnitude of this weighting
function (accomplished by increasing ~ in the control solution formulation). The W;l frequency
function invokes a higher weight at lower frequencies with a first order roll-off at higher frequencies.
This limits the low frequency noise from the sensor so that it is not amplified through the controller.

Figure / Magnitude Plots of the Inverse Weighting Functioas

The inverse weighting function for the controller output is also shown in Figure 7. The desired
characteristics of the controller is to obtain an attenuated controller response at lower and higher
frequencies. This results in a third-order weighting function that simulates a band-pass filter. The
choice of this weighting function insures that the controller does not destabilize higher frequency modes

and also attenuates control signals at lower frequencies.
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The selection of these weighting functions provides adequate damping in the closed-loop system.
An optimal H controller solution. using the + iteration technique, is determined with these weighting
functions. The controller is found to be proper and rational. Since the augmented state-space model.
derived from Equation (3). is 29™ order. the subsequent H. controller is also 29" order. The Schur
balanced model reduction method=* is used to reduce this controller. The size of the resulting controller
is 15" order. The frequency response charucteristics of the control design is shown in Figure 8. The
controller size is the maximum allowable order for the digital computer implementation. The next
section summarizes the closed-loop resuits and shows a comparison between analytical simulations and
experimental results.

Figure 8 Magnitude Plot of the Robust Coatroller

Experimental Control Results

In this section, the H. controller is experimentally implemented -onto the testbed in order to test
the validity of the identification and control techniques previously described. Results show that the
performance objectives can be met with a significant increase in damping for more than one mode.
Model uncertainties are also experimentally investigated and the results are compared to theoretical

predictions.

The initial H, controller design (shown in Figure 8) is found to substantially increase the damping
in the first two modes without the destabilization of higher modes. Digital implementation of this
controller onto the testbed increases the damping in the first mode (bending) by a factor of about 14
(€c1 = 6.32%) and the second mode (torsional) by a factor of about 30 ({,; = 7.51%). These results are
summarized in Table 2 (the table also gives results for perturbed systems and a second control design,
each described later). Slight damping is also provided in higher frequency modes. The closed-loop
transfer function between the disturbance input and position sensor for the first two modes is shown in
Figure 9. The H,, controller is able to significantly provide active dafnping in the targeted frequency

region. Figure 10 shows the position sensor output to a random noise input (bandwidth of 0-5 Hz)
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applied at the disturbance strut. Both open-loop and closed-loop responses are shown. Without the
Hy controller, the vibration of the frame does not settle out for well over 80 seconds. Closing the
loop not only attenuates the level of vibraton by over 75%, but the increase in damping also reduces
the sertling time to less than 4 seconds. In fact. the closed-loop response has a magnitude near to the

noise level of the sensor.

Table 2 Svstem Resuits for Two Controller Designs and Perturbations

1% Perturbed 2 perturbed

“n (%) wn (%)
Inital 1191 046 71.95 6.32 1)1.95 6.55 unstable |
Controller 2)4.00 025 2)441 751 2)4.44 657 unstable
Second 1) 1.91 046 19l 194 1)191 1.93 1)1.59 1.56

Controller  ||2)4.00 0.25 412 256 2)4.11 2350 2)393 262

Figure 9 Closed-Loop and Opea-Loop Transfer Function Magnitude Plots

Figure 10 Closed-Loop and Open-Loop Time Responses

With the nominal design complete, model and structural uncertainties are next studied in order to
test the robustness and sensitivity of the H controller on the closed-loop system. This is accomplished
by varying the modal properies of the frame, while utilizing the controller designed for the nominai
system. The net effect on the stmucture is to incorporate multiplicative perturbations into the system.
The H, norm of a system can be used to measure the stability margins of the nominal control design
in the face of these perturbations. Applying small gain theory’ to this uncertainty case, a sufficiency

test for stability robusmess with a multiplicative uncertainty input is given as:

1

7 F(s)\ = G(s)F(s)); ! (4

7(Am(s)) <

where A, (s) denotes multiplicative uncertainties and & denotes the maximum singular value over
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the desired frequency region. Therefore. a multiplicative uncertainty bound over all frequencies can
be used to determine which frequency is most sensitive to multiplicative perturbations. A plot of the
theoretical uncertainty bound for the initial control design using the nominal plant is shown in Figure
11. From this figure, the frequency which is most sensitive to plant perturbations is the 23 Hz mode.

Therefore, this mode is most likely to become unstable in the face of perturbations on the frame.

Figure 11 Theoretical Multiplicative Uncertainty Bouad

Muldplicatve mMadom are accomplished experimentally by varying the modal propertes of the
frame. while utilizing the initial (nominal) control design. The natural frequencies and mode shapes are
altered by placing weights at various points along the frame. These weights have a mass of approximately
3-5% of the mass of the total structure. The first perturbation is to place the weights on nodes 4 and
5 on the testbed (see Figure 3). The second perturbation is to place the weights on nodes 16 and 17
on the testbed. The resulting changes in narural frequencies for these perturbations are shown in Table
3. The first perturbation has an average deviation of about 10% from the nominal natural frequencies.
The second perturbation has an average deviation of about 15%. The most significant changes occur at
higher frequencies. Therefore, the nominal H controller can be tested for stability and performance
using the experimentally perturbed systems. The controller is first used with the weights on nodes 4
and 5. Results for the closed-loop damping ratios are shown in Table 2. Even with an average of 10%
changes from the nominal system, robust stability and performance is achieved, with equal damping
ratios as the nominal system. osed-loop results for the second perturbation show that the system
becomes unstabie. However, as rneory predicts from the multiplicative uncertainty plot (Figure 11), the
closed-loop system becomes unstable at a frequency of about 23 Hz (shown in Figure 12). Therefore,
with the aid of accurate system models, the sensitivity of the H,, controller can be investigated and

adjusted in order to compensate for perturbations wirhout implementing the controller to the actual frame.

Figure 12 Experimeatal Instability using the First Perturbed System




Table 3 Natural Frequeacies of the Perturbed Models

Mode « (Hz) « (Hz) + (Hz)
number (nom.) (Istpert.) | (2nd pert)
1 1.91 1.88 1.59
2 4.00 4.00 3.88
3 10.14 9.78 941
4 15.30 15.28 15.03
3 23.10 22.66 21.38
6 29.67 25.09 24.03
7 37.06 29.03 27.97
8 48.36 32.12 35.47
9 49.00 4425 39.72
10 54.55 47.25 46.16

The second controller design provides more robust stability, but decreases performance slightly.
This controller is derived by simply decreasing the + term during the H solution. The experimental
closed-loop results for the nominal, first perturbation, and second perturbation systems are shown in
Table 2. The magnitude frequency response and time responses to a random input are also shown
in Figures 9 and 10, respectvely. The nominal design increases da:;xping by a factor of about 4
in the first mode and by a factor of about 10 in the second mode. This damping is less than the
first controller design; however, the multiplicative uncertainty bound allows a greater perturbation at
23 Hz, as opposed to the initial controller design. Closed-loop results indicate that robust stability
and performance is maintained for both perturbation systems (see Table 2). The second perturbation
system remains stable and has approximately the same increase in damping as the first perturbation and
nominal design, using the second controller.

The control of the frame is next tested by placing the sensor at various nodes along the frame. The
sensor is next mounted at node 15 and the & = control design is repeated. Results indicate that significant

damping is again achieved in the first two modes with good agreement between theory and experiment.

19




The control design for all cases involved SISO control of one node. The final control design is a MIMO
controller with sensors placed at nodes 15 and 18. Theoretical results indicate that no significant increase
in damping is achieved for the MIMO design. This is most likely due to the frame being controlled
only by one strut. If multiple controller actuators are used. then greater possibilities of MIMO control
can be achieved. The MME/ERA identification algorithm is extremely useful for designing MIMO
feedback loops. since accurate (near mimumal) realizations of MIMO systems are possible. Therefore.
the extension to more complicated flexible frames can easily be accomplished using H, control.
Finally, the increase in system performance is achieved without the use of any supplementary (low
authority) control. In many circumstances. passive damping elements and colocated control loops are first
implemented in the design. The /. controller is then used to further improve stability and performance.
The results in this paper illustrate that system performance can be significantly improved and maintained
in the face of modest perrurbations, without the use of supplementary control. Therefore, eliminating
the need for supplementary active or passive damping decreases the complexity of the overall control

problem.

Conclusions

A controller using H optimal control theory was designed and experimentally implemented to
provide vibration suppression on a flexible frame structure. Time domain data was first used to obtain
an accurate MIMO model. The identification algorithm combined the Minimum Model Error estimator
with the Eigensystem Realization Algorithm in order to update a finite element model to conform with
experimental data. Eleven flexible modes were found to be inside the frequency range of 0—60 Hz.
all with damping ratios of less than 0.5% critical. This MIMO model formed the basis for the H
control design.

A formulation designed to add active damping to the structure was determined for the control
design. The closed-loop response characteristics of the structure was shaped by careful choice of three

weighting functions. The first weight constrained sensor noise uncertainty. The second weight was
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designed to roll-off the conwoller at low and high frequencies. The last weight controlled the amount
of active damping in the structure. Experimental implementation of the Ho controller on the flexible
frame validated the control formulation. Two control designs were considered. The first design provided
significant damping in the first rwo modes. but was sensitive to structural perturbations. The second
design provided damping to a lesser degree, but supplied robust stability over significant perturbations
to the structure. Results also indicate that with uaccurate model representations, the H.. controller can
provide not only robust stability. but robust performance to modest system perturbations.

The difficult problem of designing a non-colocated controller for a flexible structure was handled
well using H, control theory. The framework in which the controller was designed was greatly
simplified due to the accuracy of the identified state-space model. Reducing the complexity of the
problem allowed a physical basis for choosing weighting functions. Therefore, the amount of effort

needed to obtain and implement an A controller was greatly decreased.
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ABSTRACT

A testbed consisting of a flexible frame slewed by a dc motor is modeled for
active vibration suppression. This presents a challenging control problem since
the primary acton of slewing induces both bending and torsional vibrations in
the stucture. Inserted into the frame are two active members that can be used
as colocated sensor/ actuators in feedback control loops. A theoretical study is
conducted to obtain control laws that simultaneously slew the frame and
suppress the residual vibrations. Simulation results indicate that the dc motor is
effective in slewing the frame and suppressing the bending motion but not the
torsional motion. Hence, the torsional vibrations are suppressed using the active
members in colocated feedback loops.

INTRODUCTION

Slewing a flexible structure involves vibration suppression as well as accurate
pointing and tracking. For simple structures such as flexible beams, both of
these objectives can be obtained using a feedback loop consisting of the slewing
actuator and angular rate and position sensors {Garcia [1]). A variety of control
laws have been presented, some based on optimal control theory (Juang, et al
[2]), others designed with Lyapunov methods (Junkins, et al (3], Fujii, et al
(4]). For a structure that exhibits more complicated dynamics, slewing the
structure and suppressing vibrations calls for a more sophisticated control
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system. The increase in controller complexity is necessary since it is likely that
not all of the flexible modes are easily controlled using the slewing actuator. A
straightforward approach is to take advantage of recent developments in smart
structure control and integrate active members into the slewing structure.
Integrating active members into the structure provides additional sensors and
actuators for feedback control and has been shown to improve performance
(Garcia and Inman (S]). Vibration suppression and accurate pointing is
accomplished using Muitiple-Input-Multiple-Output (MIMO) control.

This approach is taken in the design of a control system for a slewing flexible
frame. This is a challenging control problem since the slewing motion excites
bending and torsional vibrations in the structure. Previous results illustrate the
need for multiple control loops, since the torsional motion is difficult to
suppress with the slewing actuator (Leo and Inman [6]). The ability to
implement MIMO control is provided by replacing two passive members of the
frame with active elements. The active members can be used in conjunction
with the slewing actuator in non-colocated control loops, or they can used as
independent colocated sensor/ actuators. This paper discusses the merits of each
approach with regards to design, robustness, and performance.

MODELING OF THE SLEWING FRAME

The slewing frame is modeled as a set of second order ordinary differential
equations of the form

¥(2) r(¢) r()] _ o . 2
NI{ 9(‘)} ¥ D{ 9([)} * K{G(:)} =BL(0)+ gl B,.v.(r) ¢))

where M, D, and K are the (n+1) x (n+1) mass, damping and stiffness matrices
derived from a finite element model consisting of the first n elastic modes of the
frame. The modal coordinates are denoted r(¢) and the rotation of the structure’s
rigid body about its axis is 6(z). The overdot represents differentiation with
respect to time. Three inputs to the system exist: the slewing actuator and two
active members. The (n+1) x 1 forcing vectors for these actuators are B,,, B,,,
and B,,;, respectively. The slewing actuator is a dc motor with armature current
i,(f), vaq and v,; are the actuator voltages across the active members. The input to
the motor is the armature voltage, e,(t). The relationship between the input
voltage and the armature current is

L2 0]+ Ril) =-K,8,() +,(0) @

The parameters L, and R, are the inductance and resistance of the dc motor, and
K, is the back-emf constant. The angular rate of the slewing frame is denoted

6,(t). Tt differs from 6(r) because it is the summation of the rigid body rotation
and the rotation due to flexibility. The sensor outputs of the system are the
angular rate and position of the frame, 6,(z) and 6,(r), and the output signals of
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the active members, v,,,(¢) and v,,;(f). The outputs are can be related to the
system coordinates and inputs by the expressions

e @) ()
6,(:)—C,{9(t)} 9,(:)-C,{é(t)}

Vot (0= B:sx{;((g} + KV (¢) vptZ(t )= B:.z{;((g} + K 2V (1) 3)

where C, and C, are the 1 x (n+1) output vectors corresponding to the angular
position and rate, respectively. Since each active member is a colocated sensor/
actuator, the output vector is simply the transpose of the input vector. The
impedance mismatch between the active members and the structure is modeled
as a feedthrough term, K, coupling the output directly to the input. The
piezoceramics on the active members are coupled to ground through a resistor,
thus creating a high-pass filter. The sensor signals from the active members,
v, (1) and v,,(¢), are related to v, () and v, (?) by the following expression

V()= 2=V ,0() = Gy )V () @

7,5+
where s is the Laplace operator and 7, is the circuit's time constant. The model
is displayed graphically in Figure 1. A complete derivati~n of this model is
presented in Leo [7].

V:l(s)

del
Ka
v, (s) > B’ G,.(s)
: B,, > - V.(s)
Voo A Wy i
E B,o [ G..(5) o
C » OS
£y B, > ]
(. &(s)

.Kb L

Figure 1: Block diagram of the slewing frame model.
In Figure 1, the following notation is used:

1
L.S + R‘ (5)

Goe(5) = {Ms* + Ds + K}~

G.(s)=
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THE SLEWING FRAME TESTBED

A frame slewed by a dc motor is presented as a testbed for experiments in the
control of slewing flexible structures. Due to its configuration, the action of
rotating the frame about an axis causes both bending and torsional vibrations.
The frame consists of individual elements of thin-walled circular aluminum
tubing. Each member is 0.635 cm in diameter and has a wall thickness of
0.124 cm. The elements are joined at octagonal nodes that are aiso made of
aluminum. Each member is pinned and bolted into the node to eliminate
looseness in the joints. The frame is mounted onto the larger steel shaft by
bolting two of the nodes into aluminum clamps.

The slewing actuator is an Electro-Craft 670 dc motor. The shaft of the motor
is coupled to a steel shaft with a diameter of 0.635 cm, which in tum is
connected to another steel shaft of diameter 1.270 cm. The smaller shaft can
easily be removed so that gears can be placed between the motor and the
structure. A tachometer housed inside the motor measures angular rate, and a
potentiometer attached to the bottom of the larger steel shaft produces a signal
proportional to angular position. The whole slewing rig is attached to a large
concrete block that serves as ground. Figure 2 is a diagram of the slewing
frame testbed.

Slewing Axis

DC Motor and Tachometer

Active Member |

3 Shaft Coupler
3
G < 0.635 cm Steel ‘ / '
VW
S i‘iiggps for
§ Frame
o - |27 cm Steel
_ Shaft
vy Ball Bearings
Pot
Orennometer nd Pillowblock
Active Member 2
0.5 meters

Figure 2: Slewing frame testbed showing the location of the active members,
angular rate and position sensors, and the dc motor.

Two of the passive elements of the frame have been replaced by active
clements. The active members are flat aluminum bars that have four strips of
piezoceramic material bonded to each side (see Figure 3). The piezoceramics
are model G-1195 from Piezo Electric Products and have dimensions 6.350 cm
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x 1.905 cm x 0.025 cm. Each ceramic is glued to the member with Duro
Depend II adhesive. All of the piezoceramics are electrically coupled to one
another to create one sensor/ actuator. On both active members, the aluminum
beam is used as a ground for the underside of all the ceramics.

The parameters for the dc motor and the active members are listed in Table 1.
Table 1: Parameters for the slewing actuator and active members.

back emf constant K, 0.11298 V/rad/sec

feedthrough K, 0.024
motor inductance L, 0.002 H
motor resistance R, 0.63 Ohms
piezo thickness t, 3.175e3 m
member thickness r, 254e4 m
circuit tme constant T, 0.275 seconds

Diezoceramics aluminum beam

T = \‘

Ox
L~ YooY N
M N—” SN’
. . Member acts as'ground
Elecrrical coupling for piezoceramics

Figure 3: Piezoceramic active member.
CONTROL SIMULATIONS

The objective of this study is to develop control schemes for the slewing frame.
The primary action of the frame is a rotation about its slewing axis, which, due
to the flexibility and low inherent damping of the structure, induces vibrations
that do not decay for a considerable amount of time. Using the model
developed in this paper, control laws are designed that simultaneously slew the
frame and suppress the vibrations. The simulations involve designing a
controller that provides satisfactory step response. Important performance
criteria include minimizing the settling time and overshoot of the frame's hub
position, as well as suppressing the structural vibrations induced during the
maneuver.

Consider the case of designing a controller to obtain satisfactory step response
of the frame's hub position. The input command to the motor corresponds to a
15° slewing maneuver. Three designs are studied. The first is a simple
Proportional-Derivative contoller using the slewing actuator and angular rate
and position feedback. The second control law has a non-colocated control loop
using active member 2 in addition to the PD compensator. The final control
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scheme involves two separate colocated controllers, one loop closed around the
motor and the other loop closed around active member 2. All designs are
performed using the nominal model shown in the previous section. Robustness
is checked by closing the control loops around models that have slightly higher
and lower natural frequencies [see Table 2]). While not an exhaustive search,
this check indicates how well the controllers can tolerate uncertainty.

Table 2: First three natral frequencies (in Hz) for the nominal model and the
perturbed models used for stability analysis during the simulations.

Nominal Modell Model2
1st torsional 4.21 4.33 4.09
1st bending 7.17 7.33 7.00
2nd torsional  13.90 14.30 13.53

-Derivatv
The procedure for designing this type of controller is rather straightforward,
since both angular rate and position measurements are available. The form for
the control law is

e, (t)=K,[6,, - 8(n)] - K.6(c) 6 -

where 6(r) and 6(r) are the outputs of the potentiometer and tachometer,
respectively. The reference voltage, 6,4, commands a 15° slew. After iterating
on the controller gains, values of K, = 2.5 and K, = 40 produce a satisfactory
step response without exczeding the voltage limits on the motor (see Figure 4).
The overshoot of the hub position is less than 5 % and the settling time is
approximately 4 seconds.

The importance of examining this control design lies in its inability to suppress
the torsional motion of the frame. This results in substantial residual vibrations
after the end of the slewing maneuver, as illustrated by the output of active
member 2 in Figure 4. This problem is due to the pole-zero cancellation that
occurs in the transfer function between the motor and the tachometer/
potentiometer outputs. As listed in Table 3, the PD compensator successively
adds damping to the first bending mode, but leaves the torsional modes lightly
damped. The ability to suppress the bending motion of the frame is due to the
large interaction between the motor and the structure, as evidenced in the open
loop magnitude plots.

i -Derivativ m ion with men Non-

Control

A natural extension of simple PD control is to use an active member as a non-
colocated sensor for a supplementary feedback loop. The function of the
supplementary control is to suppress the torsional motion of the frame while the
PD compensator provides a satisfactory step response. Using the active
member in this manner leads to the design of a control law for a non-colocated
sensor and actuator. Similar actuator/ sensor arrangements have been used in
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the past (Juang, er al, [2]), but with different design strategies and on structures
that did not exhibit torsional vibrations.

-
F

Hub Position (degrees)
y—t—3 3§
Motor Effort (volis)

AR

Sensor Output (volts)
Sensor Owput (volts)

"1 & s & W u 1w w u » W N B B M ¥ % F RN R e
time (sec) time (sec)
(c) (d)
Figure 4: Simulated step responses for the slewing frame with PD control
(dotted) and PD with supplementary GSF feedback (solid). (a) Hub position.
(b) Motor control voltage. (c) Output of active member 1. (d) Output of
member 2 showing instability due to model error.

Control law development is performed using a method called Generalized
Structural Filtering (GSF). A detailed treatment of the GSF method is
presented in Wie and Byun (8]. In its basic form, Generalized Structural
Filtering is a classical control approach to active vibration suppression in that
frequency domain and root locus techniques are used to find a suitable
compensator. The design for the slewing frame is accomplished in the
following manner. First, the model is used to find the ransfer function between
the motor input and the output of active member 2, with the PD control loop
closed. Closing the first loop is important since it greatly effects the dynamics
of the structure. The first stage of the design involves introducing a fourth order
Butterworth Lowpass Filter into the forward loop with a comner frequency of 20
Hz. This attenuates the high frequency content of the signal but causes
substantial phase lag in the target region, O to 20 Hz. Following the procedure
outlined in Wie and Byun (8], a lead filter is then placed in the compensator to
recover phase around the frequency of the first torsional mode (4 Hz). Finally,
parameters of a non-minimum phase second order filter are chosen to actively .
damp the first torsional mode. The final form for the control law is
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e,(6)=2.5{8,, - 6(r) - v,, ()] - 406(s) W)

where v,,(¢) is the output of the GSF compensator. In the Laplace domain, it
takes the form

5 S
0.025) —————+1 [ = +1
(-15.8:;42.1+ Xzo )

Vo (5)=
5 5 5 s
—+1 —— 4] | —+1 ——+1)
(48.1:1116 )(116:148.1 )(14:137.5 40

A root locus plot for the GSF design is shown in Figure 5a. From the roots
locus, a gain of 0.025 is chosen since it increases the damping in the first
torsional mode. An important feature of the root locus is that the damping in
the first bending mode is being decreased as a result of the supplementary
control loop. This is an unattractive feature of this method. The time responses
of the slewing frame with supplementary control are shown in Figure 4. The
rigid body response has slightly greater overshoot due to the added control
effort in the motor. The motor voltages with and without supplementary control
are similar, although a higher frequency component is added to the input due to
the GSF compensator (Figure 4b). The marked difference with this control
scheme is the suppression of the residual vibrations in the frame. With the
supplementary coatrol, the structural vibrations are negligible at the end of the
slewing maneuver, which contrasts sharply with the case when there is only PD
compensation (Figure 4c). The addition of the non-colocated GSF controller
enables the suppression of the first torsional mode of the frame.

V. (s)

@®

o 2nd bending T
.—: 12) - —: [t 3
i ¥
%" ol st bending ] =§° o Ist bending
= o filter pole —_ T od " filter pole
:j — » ﬁ torsioral
] 43 - 33 ) 13 2 15 ¥ o3 [ ] -3 43 - -3 -3 -3 2 13 -0 o3 ]
real (radls) (] = design region real (radls)
(a) (b)

Figure 5: Root locus plots for the GSF design (a) and the PPF design (b).
The PPF controller does not exhibit the spillover into the higher modes that
occurs in the GSF compensation.

The robustness of this control strategy is checked by closing the loop around the

perturbed models shown in Table 2. For both cases, an instability in the first
torsional mode results. This is illustrated in Figure 4d, where it shows that the
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frame is sdll vibrating almost forty seconds after the slewing maneuver is over.
This vibration is due to the mode at 4 Hz being marginally stable. Checking the
robustness in this manner indicates that the non-colocated control design is
sensitive to the uncertainties that are bound to exist in the model. Attempts at
redesigning the control law in light of these results could be made, but a more
practical approach to achieving performance and robustness specifications is
detailed in the next section.

The final dc51gn for saustactory 5tep response uses active mcmber 2 as both a
sensor and an actuator to provide vibration suppression. As in the previous
case, a PD compensator is used to slew the frame, with the colocated control
loop acting as supplementary feedback. The control law chosen for the active
member is Positive Position Feedback. Much like the GSF method, Positive
Position Feedback (PPF) consists of second order filters tuned to suppress
specific structural modes. For a detailed treatment of the design procedure, the
reader is referred to Fanson and Caughey [9]. PPF control is chosen since it is
easy to design and is robust with respect to unmodeled dynamics (Goh and
Caughey (10]). It has also been experimentally implemented in previous work
(Fanson and Caughey [9]). In the Laplace domain, the form of the PPF
controller is

v,(s)={22 . z}vxs) o)

= +20 05+

The parameters for the filter design are found using root locus techniques (see
Figure 5b). The design procedure for PPF control is more straightforward than
for the GSF method and requires much less iteration. In this case, the first
torsional mode is targeted for suppression. An important feature of the control
law is that the spillover into the high frequency modes of the system is almost
negligible due to the controller roll-off. This contrasts with the GSF design,
which decreases the damping in the first bending mode. After performing the
analysis, the following control law is obtained

e.(r)=2.58,, - 8()] - 406(c)

1.6(31)° (10)

Vals)= s* +2(0.08)(31)s +(31)° Vals)

The first part of equation (10) is simply the PD compensator designed in the
previous section, the second part is the PPF controller using active member 2 as
a colocated sensor/ actuator. A simulated slewing maneuver is shown in Figure
6. The hub position response and motor voltage are essentially the same with
and without PPF control. This is to be expected since the feedback loop is
independent of the motor. With the supplementary con:rol loop, the structural
vibrations in the frame are suppressed by the time the slewing maneuver is over
(Figure 6¢c). The damping out of the torsion is not as fast as with the GSF
controller, but this is due to the fact that the motor is a much more powerful
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actuator. During the design, the achievable damping was limited by the peak
value of the active member control effort, which is approximately 100 volts

(Figure 6d).

3 s 7
Y —
e J 2
.\a- I*‘ = 3
S " S o
s ¢ ST
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< S 4
3 ] Sarave
- 5 1 g () ]
time (sec) time (sec)
(a) (b)

PSP

- b o

o s g = e

Sensor Owput (volts)

Active Member 2
Control Effort (volts)

[y

time (sec) time (sec)
(c) (d)
Figure 10: Simulated time responses for PD control with supplementary PPF
feedback. (a) Hub position. (b) Motor control voltage. (c) Sensor output of
active member 1. (d) Active member 2 control voltage.

The robustness tests are performed on this control scheme. The test is to close
the feedback loops around the perturbed models listed in Table 2. For both
cases, the system remains stable. This represents a major advantage over the
non-colocated control, which results in an unstable system in the presence cf
model error.

Table 3: Comparison of the results for the three separate simulations.

Control Law PD PD + GSF PD + PPF
Damping (%)
1st torsional 0.2 8.2 4.8
1st bending 6.1 4.8 6.1
2nd torsional 0.4 0.5 0.4
Rigid Body Response
settling time (seconds) 4 seconds 4 seconds 4 seconds
overshoot (degrees) 0.7 1.1 04
Stability Robustness! Yes No Yes

1 Defined as being stable with the perturbed models listed in Table 2.
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These simulations indicate the inability of a motor control law to suppress the
torsional motion of the slewing frame. This is a result of a pole-zero
cancellation that occurs between the motor input and the angular rate and
position sensors. Physically, this means that the interaction between the input
torque and the torsional modes is small. These modes can be suppressed,
though, by integrating actuators and sensors into the structure. In one control
law, the active member is used solely as a sensor in a non-colocated feedback
loop. This achieves the desired vibration suppression, but is difficult to design
and does not maintain stability in the presence of model error. Another
approach is to use the active member in a colocated feedback loop, taking
advantage of the piezoelectrics ability to actuate. This leads to a rather simple
design that has negligible spillover into the higher modes. It is also more robust
with respect to model uncertainty. The results of these simulations are
consistent with initial experiments on the slewing frame (Leo and Inman [6]).

CONCLUSIONS AND FUTURE WORK

Integrating active members into complicated slewing structures is an effective
means of suppressing vibrations during and after maneuvers. This is the result
of a modeling and simulation study of a slewing frame. The distinctive feature
of the slewing frame is that the torsional modes cannot be controlled using
feedback loops consisting of the slewing actuator and angular rate and position
sensors. Vibration suppression is achieved by using active members as sensors
in non-colocated feedback loops, bur this yields a difficult design that is
sensitive to model error. A superior approach is to use the active members in
colocated feedback loops with robust control laws such as Positive Position
Feedback. When used in conjunction with a simple Proportional-Derivative
compensator, this design produces satisfactory slewing maneuvers and
simultaneously suppresses the structural vibrations.

Future work on this topic includes experimentally implementing active control
schemes and studying the effects of actuator and sensor dynamics. The
problem of controlling the slewing frame is well suited to the study of MIMO
control systems.
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ABSTRACT

A method is proposed for suppressing the resonances that occur
as an item of rotating machinery is spun-up from rest to its operat-
ing speed. This proposed method invokes “stiffness scheduling™ so
that the resonant frequency of the system is shifted during spin-up
$0 as 10 be distant from the excitation frequency. A strategy for
modulating the stiffness through the use of shape memory alloy is
also presented.

INTRODUCTION

Most common applications of “smart materials” actuators
involves obliging them to undergo some generalized displacement
in response to a specified stimulus. A slightly different approach is
suggested in this paper. Here, we consider an application in which
a modulus rather than a displacement is manipulated. Further, we
present a class of problems for which such a smart material can be
used to address very simply 2 problem of rotating equipment.

The first portion of this paper proposes a method of fabricating a
material whose modulus can be changed substantially through the
application of a specified stimulus. The particular impiementation
presented here indirectly exploits the large deformation associated
with shape memory alloys to achieve the desired modulation of
stiffness.

The next portion of this paper discusses a class of vibration prob-
lems for which such materials have a serious potential for vibration
suppression. These are problems, such as the spinning up of rotat-
ing machinery, in which the excitation at any time lies within a
narrow frequency band, and that band moves through the fre-
quency spectrum in a predictable manner.

Finally, an example problem is examined and the utility of this
approach is discussed.

! Work supported by the U.S. Department of Energy at Sandia National
Laboratories under Contract DE-AC0476DP00789

A SMART MATERIAL WITH MODULATED EL/.STIC
MODULUS

Here we present an approach for modulating the elastic moduli
of materials by introducing a reinforcing material whose contribu-
tion to the stiffness of the composite can be tumed on and off. We
first consider an elastic matrix structure through which an array of
holes has been drilled. Then strands of shape memory alloy (SMA)
are threaded through the holes and knobs (or knots) are placed at
the ends of the strands, leaving just a little slack. (See Figure 1 and
Figure 2.) Since the SMA can move freely through the matrix, it
contributes nothing to the stiffness of the composite structure.
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FIGURE 1. THE MATRIX MATERIAL WITH HOLES
THROUGH WHICH SMA IS THREADED. THE FREE
MOVEMENT OF THE SMA WITH RESPECT TO THE
MATRIX PREVENTS IT FROM CONTRIBUTING TO THE
STIFFNESS OF THE COMPOSITE STRUCTURE.

We now take advantage of a fundamental feature of shape mem-
ory alloy: when shape memory alloy is subjected to a change of
temperature it is caused to jump to an equilibrium phase appropri-
ate to that temperature. In particulss, it can be switched from the
extended, stress-free state shown in Figure 2 to the shortened state




FIGURE 2. THE MATRIX MATERIAL WITH HOLES
THROUGH WHICH SMA IS THREADED. EVEN
THOUGH THERE ARE KNOBS ON THE ENDS OF
THE SMA STRANDS, THERE IS STILL ENOUGH
SLACK TO PERMIT FREE MOVEMENT. AGAIN, THE
FREE MOVEMENT OF THE SMA WITH RESPECT TO
THE MATRIX PREVENTS IT FROM CONTRIBUTING
TO THE STIFFNESS OF THE COMPOSITE.

FIGURE 3. THE MATRIX MATERIAL WITH HOLES
THROUGH WHICH SMA IS THREADED. THE SMA
HAS BEEN ACTIVATED, CAUSING A JUMP TO A
PHASE WITH A SHORTER EQUILIBRIUM LENGTH,
TAKING UP ALL SLACK. THE KNOBS ARE NOW
PRESSING AGAINST THE MATRIX MATERIAL,
COMPLETELY COUPLING EXTENSIONAL
DEFORMATIONS OF THE TWO MATERIALS.

shown in Figure 3. In the shortened state, all slack is taken up, the
knobs are pulled into the matrix, and the SMA is in tension.

This state, in which the SMA is contracted, the knobs fully cou-
ple the extensional deformation of the SMA to that of the matrix
material. One may now use any one of the standard formulae to
estimate the extensional modulus of the composite structure. A
good review of alternative methods of performing these calcula-
tions is presented by Christensen (1991). A first approximatian of
the stiffening effect of the SMA is obtained by assummg uniform
strains within the composite. This analysis results in a stiffness
increase proportional to the relative stiffness of the SMA and the
matrix material, to the ratios of the cross sectional areas of the
SMA and the matrix materials, and 10 the percentage of the SMA
strands that have been activated to contract.

The phase ransformations of the SMA is reversible, so that a
return to the previous temperature will result in a return to the con-
figuration shown in Figure 2. By raising and dropping temperature,
on can cause repeated reversals in the stiffness of the composite.
The issue of response time becomes primarily an issue of the rates
of heating and cooling. Heating is usually achieved by running a
current through the SMA itself while cooling is usually achieved
through convective and diffusive processes. However, response
times can be accelerated by using more aggressive cooling tech-
niques (Zerkus 1992).

It is important to note that the effect that is being targeled here is
to modulate stiffness rather than to impose a deformation, as has
been done ofien before; see Lagoudas and Tadjbakhsh (1992). A.
Baz et al (1992) have used shape-memory alloy embeddad in a
composite to achieve a more gradual modulation in stiffness,
exploiting primarily the modulus change accompanying phase
change.

Because applications described below require a change in modu-
lus just from one stage of a transient spinning process to another,
rather than within each rotation, particularly fast response times
are not necessary.

It should be noted that the strategy presented above for modulat-
ing the stiffness of a composite structure could be applied with
materials other than shape memory alloy, so long as those materi-
als can be caused (o undergo large static deformation through some
outside stimulus. Classes of such materials besides shape memory
alloys include thermo-elastic, piezo-electric, and magnetostrictive
materials.

A further note should observe that the crude configuration shown
above could be extended by placing the SMA near the surface of a
beam, and staggered along the length of the beam. This configura-
tion, shown in Figure 4, permits effective modulation of the bend-
ing modulus of the beamn. If the beam is originally in a spiral
configuration, one now has a spring whose stiffness is modulated.

FIGURE 4. A STAGGERED CONFIGURATION OF SMA
FILLERS IN AN ELASTIC MATRIX.

APPLICATION TO A CLASS OF VIBRATION PROBLEMS

' General Problem Description

The vibration suppression capabilities of the smart material
described above will be demonstrated by application to a class of
rotating vibration problems. This class of problems is defined by
the excitation frequency of the system being an integer multiple, n,
of the angular velocity of the system so that during spin-up, the
excitation frequency passes through the nawral frequency of the
system.

Paradigm Problem Description

We consider here the simplest such case, that of a rigid disk
pinned to a rigid shaft. The connection includes a keyway so that
the disk must rotate with the shaft, though it may wobble from side
to side. A torsional spring serves to restore the disk to its normal
configuration. This simple model, used in other dynamics analysis




by Chen and Bogy(1992), is meant to account in a very approxi-
mate way for shaft or disk flexibility. The disk rotates between
frictionless spring loaded plates. A number, n, of small sinusoi-
dally shaped projections on the surface of the disk cause a sinusoi-
dal excitation. The torsional spring is oriented such that a line
connecting the peaks of the projections on the disk would be per-
pendicular to the axis of rotation of the torsional spring. This sys-
tem is shown in Figure §.
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FIGURE 5. DISK/'SHAFT SYSTEM.

The governing equations can be derived in many ways (the
authors have used the method presented by Segalman and Dohe-

mann (1990). The equation for the angle ¢, by which the disk is
off normal is:

1, 6+ch+o(Bk+1, o) = Asin(nar) Q1)

The multiplier B is ordinarily unity, but will be used later on as a

“stiffening” multiplier. An interesting feature of this system is that
the excitation frequency at resonance is:

k c
== (57)
o = .’1’__21’_’_ (7))

2
n-1

so that excitation will pass through the damped natural frequency

of the system only for n greater than one.

The following quantities are used to make the equation of
motion dimensionless:

k,
o, = E

nanwral frequency for the nonspinning

system.
o
a=- dimensionless frequency
[
T=o0g dimensionless time

c

&= dimensionless damping ratio
2’!}00

A= Al " sonless excitati litude
oy

(I = 0(;:—) dimensionless deflection amplitude

The dimensionless equation of motion is:

@ +280" + (B+0?) ® = Asin (naT) €))
Stiffness modulation will be affected by changing B, represent-
ing a gain factor for stiffness.

The spin-up profile for the class of problems considered is:

re O<it<t,

®= {rt. t>1, @

This spin-up profile causes the differential equation of motion to

contain coefficients which are explicit functions of time, and the

forcing sinusoid to be a function of 1. The ramping nature of the

forcing function contains a narrow band of frequencies about the

instantaneous frequency of art. This results in the system’s

damped natural frequency being excited prior 1o the intersection of

the instantaneous excitation frequency and the system's damped
natural frequency.

SMART MATERIAL APPLICATION - STIFFNESS
SCHEDULING

Stiffness scheduling is defined as adapting the stiffness of the
structure to reduce disturbance sensitivity. (This has been
investigated by Viderman and Porat (1987) and by Nagaya et al
(1987), in which the stiffnesses at the supports of rotors are modu-
lated.) Since the smart material described above can take on two
distinct elastic moduli, the system will have two distinct damped
natural frequencies. If the frequency responses for these two sys-
tems can be sufficiently separated, then the frequency response of
the smart system can be greatly reduced.

Here we consider a system with the following dimensionless
parameters:

E = 0.02

n = 2

A = 0.1

a={ T 0<T<200.0
200r T >200.0

r = 0.005

A fourth order Runge-Kutta method was used to integrate the
goveming equation for this system for three cases:

* the dimensionless stiffness is set to a higher value;

¢ the dimensionless stiffness B is set to a relatively low value;

« and dimensionless stiffness is appropriately switched curing
the ramp up of spin.




RESULTS

Figure 6 shows the dimensionless tilt as a function of dimension-
less time for the case where the torsional spring is held in a stiffer
mode throughout: § = 4. For that case, a large resonance behav-
jor is seen near a dimensionless time of 120. A beating occurs for a
while after the shaft reaches its terminal speed. More significantly,
a fairly large oscillation remains at long times, after the disk has
reached terminal speed.
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FIGURE 6. STIFFENING ACTUATOR TURNED ON
THROUGHOQUT SPIN-UP.

Figure 7 shows the corresponding curve for the case of p = 1.
As expected, the resonance-like behavior occurs earlier in the pro-
cess, when the excitation frequencies are lower. It is important that
the behavior at long times manifests much lower amplitudes than
is the case with the stiffer spring. This difference occurs because
the natural frequency in this case is further from the steady state
forcing frequency.
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FIGURE 7. STIFFENING ACTUATOR TURNED OFF
THROUGHOUT SPIN.

Figure 8 shows the dimensionless tilt as a function of dimension-
less time where the stiffness parameter, B , is initially held at a
value of 1.0 and instantaneously changed to a value of 4.0 at
dimensionless time 98.0.

Note that the maximum amplitude in the resonance regime is
slighly more than halved and that the long term oscillations are
substantially lower in amplitude than those of the stiff system. Of
course, this high frequency response is due to the stiffness of the
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FIGURE 8. AMPLITUDE RESPONSE WITH
STIFFNESS SCHEDULING.

structure at long times being that of the material shown in Figure 7,
and the forced response at those frequencies are similar.

CONCLUSIONS

The smart material described here can be used in conjunction
with stiffness scheduling to give a reduction in vibration amplitude
for a class of rotating systems where the excitation is proportional
to the spin rate. The time at which to change stiffness is based on
the spin-up profile being known in advance. This permits the best
switching time to be chosen based on the frequency components of
the excitation and the stiffness switching transients.

FUTURE WORK

A control law for choosing the stiffness switching time is being
developed which does not require exact knowledge of the spin-up
profile. Further, basic work in the materials issues of such actus-
tors must be done.
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